Deep Learning for Diabetes: A Systematic Review

Diabetes is a chronic metabolic disorder that affects an estimated 463 million people worldwide. Aiming to improve the treatment of people with diabetes, digital health has been widely adopted in recent years and generated a huge amount of data that could be used for further management of this chron...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 25; no. 7; pp. 2744 - 2757
Main Authors Zhu, Taiyu, Li, Kezhi, Herrero, Pau, Georgiou, Pantelis
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2020.3040225

Cover

More Information
Summary:Diabetes is a chronic metabolic disorder that affects an estimated 463 million people worldwide. Aiming to improve the treatment of people with diabetes, digital health has been widely adopted in recent years and generated a huge amount of data that could be used for further management of this chronic disease. Taking advantage of this, approaches that use artificial intelligence and specifically deep learning, an emerging type of machine learning, have been widely adopted with promising results. In this paper, we present a comprehensive review of the applications of deep learning within the field of diabetes. We conducted a systematic literature search and identified three main areas that use this approach: diagnosis of diabetes, glucose management, and diagnosis of diabetes-related complications. The search resulted in the selection of 40 original research articles, of which we have summarized the key information about the employed learning models, development process, main outcomes, and baseline methods for performance evaluation. Among the analyzed literature, it is to be noted that various deep learning techniques and frameworks have achieved state-of-the-art performance in many diabetes-related tasks by outperforming conventional machine learning approaches. Meanwhile, we identify some limitations in the current literature, such as a lack of data availability and model interpretability. The rapid developments in deep learning and the increase in available data offer the possibility to meet these challenges in the near future and allow the widespread deployment of this technology in clinical settings.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2020.3040225