Hyperspectral Image Classification by Nonlocal Joint Collaborative Representation With a Locally Adaptive Dictionary

Sparse representation has been widely used in image classification. Sparsity-based algorithms are, however, known to be time consuming. Meanwhile, recent work has shown that it is the collaborative representation (CR) rather than the sparsity constraint that determines the performance of the algorit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 52; no. 6; pp. 3707 - 3719
Main Authors Li, Jiayi, Zhang, Hongyan, Huang, Yuancheng, Zhang, Liangpei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2013.2274875

Cover

More Information
Summary:Sparse representation has been widely used in image classification. Sparsity-based algorithms are, however, known to be time consuming. Meanwhile, recent work has shown that it is the collaborative representation (CR) rather than the sparsity constraint that determines the performance of the algorithm. We therefore propose a nonlocal joint CR classification method with a locally adaptive dictionary (NJCRC-LAD) for hyperspectral image (HSI) classification. This paper focuses on the working mechanism of CR and builds the joint collaboration model (JCM). The joint-signal matrix is constructed with the nonlocal pixels of the test pixel. A subdictionary is utilized, which is adaptive to the nonlocal signal matrix instead of the entire dictionary. The proposed NJCRC-LAD method is tested on three HSIs, and the experimental results suggest that the proposed algorithm outperforms the corresponding sparsity-based algorithms and the classical support vector machine hyperspectral classifier.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2013.2274875