Computing solution landscape of nonlinear space-fractional problems via fast approximation algorithm

The nonlinear space-fractional problems often allow multiple stationary solutions, which can be much more complicated than the corresponding integer-order problems. In this paper, we systematically compute the solution landscapes of nonlinear constant/variable-order space-fractional problems on one-...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 468; p. 111513
Main Authors Yu, Bing, Zheng, Xiangcheng, Zhang, Pingwen, Zhang, Lei
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Inc 01.11.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
DOI10.1016/j.jcp.2022.111513

Cover

Abstract The nonlinear space-fractional problems often allow multiple stationary solutions, which can be much more complicated than the corresponding integer-order problems. In this paper, we systematically compute the solution landscapes of nonlinear constant/variable-order space-fractional problems on one- and two-dimensional rectangular domains. A fast approximation algorithm is developed to deal with the variable-order spectral fractional Laplacian by approximating the variable-indexing Fourier modes, and then combined with saddle dynamics to construct the solution landscape of variable-order space-fractional phase field model. Numerical experiments are performed to substantiate the accuracy and efficiency of fast approximation algorithm and elucidate essential features of the stationary solutions of space-fractional phase field model. Furthermore, we demonstrate that the solution landscapes of spectral fractional Laplacian problems can be reconfigured by varying the diffusion coefficients in the corresponding integer-order problems. •A fast approximation algorithm for variable-order spectral fractional Laplacian.•Construction of solution landscapes of space-fractional phase field models.•Reconfiguration of fractional Laplacian problems by integer-order problems.
AbstractList The nonlinear space-fractional problems often allow multiple stationary solutions, which can be much more complicated than the corresponding integer-order problems. In this paper, we systematically compute the solution landscapes of nonlinear constant/variable-order space-fractional problems on one- and two-dimensional rectangular domains. A fast approximation algorithm is developed to deal with the variable-order spectral fractional Laplacian by approximating the variable-indexing Fourier modes, and then combined with saddle dynamics to construct the solution landscape of variable-order space-fractional phase field model. Numerical experiments are performed to substantiate the accuracy and efficiency of fast approximation algorithm and elucidate essential features of the stationary solutions of space-fractional phase field model. Furthermore, we demonstrate that the solution landscapes of spectral fractional Laplacian problems can be reconfigured by varying the diffusion coefficients in the corresponding integer-order problems.
The nonlinear space-fractional problems often allow multiple stationary solutions, which can be much more complicated than the corresponding integer-order problems. In this paper, we systematically compute the solution landscapes of nonlinear constant/variable-order space-fractional problems on one- and two-dimensional rectangular domains. A fast approximation algorithm is developed to deal with the variable-order spectral fractional Laplacian by approximating the variable-indexing Fourier modes, and then combined with saddle dynamics to construct the solution landscape of variable-order space-fractional phase field model. Numerical experiments are performed to substantiate the accuracy and efficiency of fast approximation algorithm and elucidate essential features of the stationary solutions of space-fractional phase field model. Furthermore, we demonstrate that the solution landscapes of spectral fractional Laplacian problems can be reconfigured by varying the diffusion coefficients in the corresponding integer-order problems. •A fast approximation algorithm for variable-order spectral fractional Laplacian.•Construction of solution landscapes of space-fractional phase field models.•Reconfiguration of fractional Laplacian problems by integer-order problems.
ArticleNumber 111513
Author Zheng, Xiangcheng
Yu, Bing
Zhang, Pingwen
Zhang, Lei
Author_xml – sequence: 1
  givenname: Bing
  orcidid: 0000-0001-8494-3775
  surname: Yu
  fullname: Yu, Bing
  email: yubing93@pku.edu.cn
  organization: School of Mathematical Sciences, Peking University, Beijing 100871, China
– sequence: 2
  givenname: Xiangcheng
  surname: Zheng
  fullname: Zheng, Xiangcheng
  email: zhengxch@math.pku.edu.cn
  organization: School of Mathematical Sciences, Peking University, Beijing 100871, China
– sequence: 3
  givenname: Pingwen
  surname: Zhang
  fullname: Zhang, Pingwen
  email: pzhang@pku.edu.cn
  organization: School of Mathematical Sciences, Laboratory of Mathematics and Applied Mathematics, Peking University, Beijing 100871, China
– sequence: 4
  givenname: Lei
  orcidid: 0000-0001-9972-2051
  surname: Zhang
  fullname: Zhang, Lei
  email: zhangl@math.pku.edu.cn
  organization: Beijing International Center for Mathematical Research, Center for Machine Learning Research, Center for Quantitative Biology, Peking University, Beijing 100871, China
BookMark eNp9kEtPxCAUhYnRxJnRH-COxHUrlD7jykx8JZO40TWhFxhp2lKBmei_l5m6cjHcBeTmnMu53xKdj3ZUCN1QklJCy7su7WBKM5JlKaW0oOwMLShpSJJVtDxHC0IymjRNQy_R0vuOEFIXeb1Acm2HaRfMuMXe9vFhR9yLUXoQk8JW4_hPb0YlHPaTAJVoJ-CgEj2enG17NXi8NwJr4QMWU-x9m0Ec54h-a50Jn8MVutCi9-r6716hj6fH9_VLsnl7fl0_bBJgWRGSjFXQMMmgaFsGeVFJWSnSNoxSUesqVqsBmMxLVjFR1CXoFlQ8VDOiq4Kt0O08N6b42ikfeGd3Lkb1PGJoCMsJKaOKzipw1nunNJ9cjOx-OCX8AJN3PMLkB5h8hhk91T8PmHDcMjhh-pPO-9mp4uJ7oxz3YNQIShqnIHBpzQn3L-Duk2c
CitedBy_id crossref_primary_10_1016_j_cageo_2024_105660
crossref_primary_10_1112_jlms_70091
crossref_primary_10_1016_j_enganabound_2023_05_049
crossref_primary_10_3390_fractalfract6110627
crossref_primary_10_1007_s11425_022_2149_2
crossref_primary_10_1007_s10092_024_00611_2
crossref_primary_10_1007_s11401_023_0043_8
crossref_primary_10_1002_num_23123
crossref_primary_10_3390_fractalfract8020089
crossref_primary_10_1007_s00033_022_01890_x
crossref_primary_10_1007_s40314_025_03116_y
Cites_doi 10.1016/j.jcp.2019.109141
10.1088/1361-6544/abc5d4
10.1137/080730597
10.1051/m2an/2013091
10.1137/19M1243750
10.1137/19M1296720
10.1002/num.22865
10.1016/j.jconhyd.2013.11.002
10.1017/S0962492921000088
10.1137/16M1097109
10.1137/16M1075302
10.1016/j.jcp.2019.01.042
10.1017/S096249292000001X
10.1137/141001299
10.1137/140972676
10.1016/j.cma.2020.112936
10.1088/0951-7715/24/6/008
10.1137/15M1033952
10.1137/19M128377X
10.1137/19M1253356
10.1007/s10915-021-01427-w
10.1016/j.cma.2016.03.018
10.1146/annurev.matsci.32.112001.132041
10.1007/s11425-020-1737-1
10.1103/PhysRevLett.124.090601
10.1137/18M1224970
10.1007/s10915-020-01366-y
10.1016/j.jcp.2015.07.011
10.1103/PhysRevLett.98.265703
10.1137/140984798
10.1016/j.jcp.2013.06.031
10.1137/19M1245621
10.1063/1.1436470
10.1023/A:1016586905654
10.1016/j.physa.2009.07.024
10.1007/s00791-018-0289-y
10.1137/130933745
10.1137/19M1244299
10.1080/00036811.2020.1789596
10.1016/j.physd.2021.133081
10.1103/PhysRevE.84.025702
10.1098/rspa.2021.0458
10.1016/j.jde.2020.12.034
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright Elsevier Science Ltd. Nov 1, 2022
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Nov 1, 2022
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2022.111513
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
ExternalDocumentID 10_1016_j_jcp_2022_111513
S0021999122005757
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
AGCQF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-237c93d3c5bb3c457dd7e0b9311a8f7f7fbfcc3d46373a586cfbceeee1f30f753
IEDL.DBID .~1
ISSN 0021-9991
IngestDate Sun Sep 07 03:41:13 EDT 2025
Wed Oct 01 02:37:01 EDT 2025
Thu Apr 24 22:54:49 EDT 2025
Fri Feb 23 02:40:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stationary solution
Variable-order
Saddle dynamics
Fractional Laplacian
Solution landscape
Phase field
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-237c93d3c5bb3c457dd7e0b9311a8f7f7fbfcc3d46373a586cfbceeee1f30f753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9972-2051
0000-0001-8494-3775
PQID 2719034006
PQPubID 2047462
ParticipantIDs proquest_journals_2719034006
crossref_primary_10_1016_j_jcp_2022_111513
crossref_citationtrail_10_1016_j_jcp_2022_111513
elsevier_sciencedirect_doi_10_1016_j_jcp_2022_111513
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2022
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Yin, Zhang, Zhang (br0420) 2019; 41
Doye, Wales (br0130) 2002; 116
Lanzara, Maz'ya, Schmidt (br0230) 2021
Sun, Chen, Chen (br0330) 2009; 388
D'Elia, Glusa (br0100) 2022
Wang, Zhang, Zhang (br0370) 2021; 30
Zhuang, Liu, Anh, Turner (br0520) 2009; 47
D'Elia, Du, Glusa, Gunzburger, Tian, Zhou (br0110) 2020; 29
Antil, Rautenberg (br0040) 2019; 51
Zayernouri, Karniadakis (br0440) 2013; 252
Ainsworth, Mao (br0060) 2017; 55
Yin, Yu, Zhang (br0410) 2021; 64
Sun, Zhang, Chen, Reeves (br0340) 2014; 157
Farrell, Birkisson, Funke (br0220) 2015; 37
Song, Xu (br0320) 2015; 299
Duo, Wang (br0140) 2019; 384
Mao, Shen (br0240) 2017; 39
Ervin (br0170) 2021; 278
Han, Yin, Hu, Majumdar, Zhang (br0190) 2021; 477
Sheng, Shen, Tang, Wang, Yuan (br0310) 2020; 58
Wiggins (br0380) 2003
Tian, Du (br0360) 2020; 62
Du, Ju, Li, Qiao (br0150) 2021; 63
Zheng, Wang (br0500) 2020; 58
Adams, Fournier (br0020) 2003
Deng, Hesthaven (br0120) 2013; 47
Yin, Wang, Chen, Zhang, Zhang (br0400) 2020; 124
Milnor (br0260) 1963
Mehta (br0250) 2011; 84
Xu, Darve (br0390) 2020; 364
Zheng, Ervin, Wang (br0510) 2021; 86
Pang, Sun (br0270) 2021; 87
Farquhar, Moroney, Yang, Turner, Burrage (br0210)
Shen, Tang, Wang (br0300) 2011; vol. 41
Bonito, Borthagaray, Nochetto, Otárola, Salgado (br0070) 2018; 19
E, Zhou (br0160) 2011; 24
Qiao, Sun (br0280) 2014; 36
Zhang, Du, Zheng (br0470) 2016; 38
Tang, Wang, Yuan, Zhou (br0350) 2020; 42
Zeng, Zhang, Karniadakis (br0450) 2015; 37
Zhang, Jiang, Zeng, Karniadakis (br0480) 2020; 405
Allgower, Georg (br0030) 2003
Chen (br0080) 2002; 32
Han, Yin, Zhang, Majumdar, Zhang (br0180) 2021; 34
Song, Xu, Karniadakis (br0290) 2016; 305
Acosta, Borthagaray (br0010) 2017; 55
Yin, Zhang, Zhang (br0430) 2022; 430
Zhang, Chen, Du (br0460) 2007; 98
Lorenzo, Hartley (br0200) 2002; 29
Antil, Ceretani, Rautenberg (br0050) 2021
Zheng, Wang (br0490) 2022; 101
Colli, Gilardi (br0090) 2019; 114
Duo (10.1016/j.jcp.2022.111513_br0140) 2019; 384
Farquhar (10.1016/j.jcp.2022.111513_br0210)
Mehta (10.1016/j.jcp.2022.111513_br0250) 2011; 84
Milnor (10.1016/j.jcp.2022.111513_br0260) 1963
Wang (10.1016/j.jcp.2022.111513_br0370) 2021; 30
Antil (10.1016/j.jcp.2022.111513_br0050)
D'Elia (10.1016/j.jcp.2022.111513_br0100) 2022
Bonito (10.1016/j.jcp.2022.111513_br0070) 2018; 19
Du (10.1016/j.jcp.2022.111513_br0150) 2021; 63
Lorenzo (10.1016/j.jcp.2022.111513_br0200) 2002; 29
Lanzara (10.1016/j.jcp.2022.111513_br0230) 2021
Tang (10.1016/j.jcp.2022.111513_br0350) 2020; 42
Tian (10.1016/j.jcp.2022.111513_br0360) 2020; 62
Pang (10.1016/j.jcp.2022.111513_br0270) 2021; 87
Zheng (10.1016/j.jcp.2022.111513_br0490) 2022; 101
Sun (10.1016/j.jcp.2022.111513_br0340) 2014; 157
Wiggins (10.1016/j.jcp.2022.111513_br0380) 2003
Yin (10.1016/j.jcp.2022.111513_br0410) 2021; 64
Mao (10.1016/j.jcp.2022.111513_br0240) 2017; 39
Ervin (10.1016/j.jcp.2022.111513_br0170) 2021; 278
Xu (10.1016/j.jcp.2022.111513_br0390) 2020; 364
Song (10.1016/j.jcp.2022.111513_br0290) 2016; 305
Ainsworth (10.1016/j.jcp.2022.111513_br0060) 2017; 55
Colli (10.1016/j.jcp.2022.111513_br0090) 2019; 114
Zhang (10.1016/j.jcp.2022.111513_br0460) 2007; 98
Zhuang (10.1016/j.jcp.2022.111513_br0520) 2009; 47
Han (10.1016/j.jcp.2022.111513_br0180) 2021; 34
Sheng (10.1016/j.jcp.2022.111513_br0310) 2020; 58
Zhang (10.1016/j.jcp.2022.111513_br0480) 2020; 405
Yin (10.1016/j.jcp.2022.111513_br0420) 2019; 41
Chen (10.1016/j.jcp.2022.111513_br0080) 2002; 32
Deng (10.1016/j.jcp.2022.111513_br0120) 2013; 47
Shen (10.1016/j.jcp.2022.111513_br0300) 2011; vol. 41
Zayernouri (10.1016/j.jcp.2022.111513_br0440) 2013; 252
Han (10.1016/j.jcp.2022.111513_br0190) 2021; 477
Farrell (10.1016/j.jcp.2022.111513_br0220) 2015; 37
Zhang (10.1016/j.jcp.2022.111513_br0470) 2016; 38
Song (10.1016/j.jcp.2022.111513_br0320) 2015; 299
Sun (10.1016/j.jcp.2022.111513_br0330) 2009; 388
Yin (10.1016/j.jcp.2022.111513_br0400) 2020; 124
Adams (10.1016/j.jcp.2022.111513_br0020) 2003
D'Elia (10.1016/j.jcp.2022.111513_br0110) 2020; 29
E (10.1016/j.jcp.2022.111513_br0160) 2011; 24
Zeng (10.1016/j.jcp.2022.111513_br0450) 2015; 37
Acosta (10.1016/j.jcp.2022.111513_br0010) 2017; 55
Qiao (10.1016/j.jcp.2022.111513_br0280) 2014; 36
Allgower (10.1016/j.jcp.2022.111513_br0030) 2003
Zheng (10.1016/j.jcp.2022.111513_br0500) 2020; 58
Yin (10.1016/j.jcp.2022.111513_br0430) 2022; 430
Antil (10.1016/j.jcp.2022.111513_br0040) 2019; 51
Doye (10.1016/j.jcp.2022.111513_br0130) 2002; 116
Zheng (10.1016/j.jcp.2022.111513_br0510) 2021; 86
References_xml – volume: 37
  start-page: A2026
  year: 2015
  end-page: A2045
  ident: br0220
  article-title: Deflation techniques for finding distinct solutions of nonlinear partial differential equations
  publication-title: SIAM J. Sci. Comput.
– volume: 388
  start-page: 4586
  year: 2009
  end-page: 4592
  ident: br0330
  article-title: Variable-order fractional differential operators in anomalous diffusion modeling
  publication-title: Phys. A, Stat. Mech. Appl.
– volume: 55
  start-page: 1689
  year: 2017
  end-page: 1718
  ident: br0060
  article-title: Analysis and approximation of a fractional Cahn-Hilliard equation
  publication-title: SIAM J. Numer. Anal.
– volume: 32
  start-page: 113
  year: 2002
  end-page: 140
  ident: br0080
  article-title: Phase-field models for microstructure evolution
  publication-title: Annu. Rev. Mater. Res.
– volume: 58
  start-page: 2435
  year: 2020
  end-page: 2464
  ident: br0310
  article-title: Fast Fourier-like mapped Chebyshev spectral-Galerkin methods for PDEs with integral fractional Laplacian in unbounded domains
  publication-title: SIAM J. Numer. Anal.
– volume: 39
  start-page: A1928
  year: 2017
  end-page: A1950
  ident: br0240
  article-title: Hermite spectral methods for fractional PDEs in unbounded domains
  publication-title: SIAM J. Sci. Comput.
– volume: 30
  start-page: 765
  year: 2021
  end-page: 851
  ident: br0370
  article-title: Modeling and computation of liquid crystals
  publication-title: Acta Numer.
– volume: 384
  start-page: 253
  year: 2019
  end-page: 269
  ident: br0140
  article-title: A fractional phase-field model using an infinitesimal generator of
  publication-title: J. Comput. Phys.
– volume: 101
  start-page: 1848
  year: 2022
  end-page: 1870
  ident: br0490
  article-title: Variable-order space-fractional diffusion equations and a variable-order modification of constant-order fractional problems
  publication-title: Appl. Anal.
– volume: 62
  start-page: 199
  year: 2020
  end-page: 227
  ident: br0360
  article-title: Asymptotically compatible schemes for robust discretization of parametrized problems with applications to nonlocal models
  publication-title: SIAM Rev.
– volume: 41
  start-page: A3576
  year: 2019
  end-page: A3595
  ident: br0420
  article-title: High-index optimization-based shrinking dimer method for finding high-index saddle points
  publication-title: SIAM J. Sci. Comput.
– volume: 278
  start-page: 294
  year: 2021
  end-page: 325
  ident: br0170
  article-title: Regularity of the solution to fractional diffusion, advection, reaction equations in weighted Sobolev spaces
  publication-title: J. Differ. Equ.
– volume: vol. 41
  year: 2011
  ident: br0300
  article-title: Spectral Methods: Algorithms, Analysis and Applications
  publication-title: Springer Ser. Comput. Math.
– year: 2022
  ident: br0100
  article-title: A fractional model for anomalous diffusion with increased variability: Analysis, algorithms and applications to interface problems
  publication-title: Numer. Methods Partial Differ. Eq.
– volume: 364
  year: 2020
  ident: br0390
  article-title: Isogeometric collocation method for the fractional Laplacian in the 2D bounded domain
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 29
  start-page: 1
  year: 2020
  end-page: 124
  ident: br0110
  article-title: Numerical methods for nonlocal and fractional models
  publication-title: Acta Numer.
– volume: 124
  year: 2020
  ident: br0400
  article-title: Construction of a pathway map on a complicated energy landscape
  publication-title: Phys. Rev. Lett.
– volume: 116
  start-page: 3777
  year: 2002
  end-page: 3788
  ident: br0130
  article-title: Saddle points and dynamics of Lennard-Jones clusters, solids, and supercooled liquids
  publication-title: J. Chem. Phys.
– year: 2003
  ident: br0380
  article-title: Introduction to Applied Nonlinear Dynamical Systems and Chaos
– volume: 51
  start-page: 2479
  year: 2019
  end-page: 2503
  ident: br0040
  article-title: Sobolev spaces with non-Muckenhoupt weights, fractional elliptic operators, and applications
  publication-title: SIAM J. Math. Anal.
– volume: 63
  start-page: 317
  year: 2021
  end-page: 359
  ident: br0150
  article-title: Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes
  publication-title: SIAM Rev.
– volume: 55
  start-page: 472
  year: 2017
  end-page: 495
  ident: br0010
  article-title: A fractional Laplace equation: regularity of solutions and finite element approximations
  publication-title: SIAM J. Numer. Anal.
– volume: 98
  year: 2007
  ident: br0460
  article-title: Morphology of critical nuclei in solid-state phase transformations
  publication-title: Phys. Rev. Lett.
– volume: 29
  start-page: 57
  year: 2002
  end-page: 98
  ident: br0200
  article-title: Variable order and distributed order fractional operators
  publication-title: Nonlinear Dyn.
– volume: 114
  start-page: 93
  year: 2019
  end-page: 128
  ident: br0090
  article-title: Well-posedness, regularity and asymptotic analyses for a fractional phase field system
  publication-title: Asymptot. Anal.
– volume: 47
  start-page: 1845
  year: 2013
  end-page: 1864
  ident: br0120
  article-title: Local discontinuous Galerkin methods for fractional diffusion equations
  publication-title: ESAIM: M2AN
– start-page: 1
  year: 2021
  end-page: 17
  ident: br0230
  article-title: Fast computation of the multidimensional fractional Laplacian
  publication-title: Appl. Anal.
– volume: 36
  start-page: 708
  year: 2014
  end-page: 728
  ident: br0280
  article-title: Two-phase fluid simulation using a diffuse interface model with Peng–Robinson equation of state
  publication-title: SIAM J. Sci. Comput.
– ident: br0210
  article-title: Computational modelling of cardiac ischaemia using a variable-order fractional Laplacian
– volume: 42
  start-page: A585
  year: 2020
  end-page: A611
  ident: br0350
  article-title: Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains
  publication-title: SIAM J. Sci. Comput.
– volume: 58
  start-page: 330
  year: 2020
  end-page: 352
  ident: br0500
  article-title: An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes
  publication-title: SIAM J. Numer. Anal.
– volume: 299
  start-page: 196
  year: 2015
  end-page: 214
  ident: br0320
  article-title: Spectral direction splitting methods for two-dimensional space fractional diffusion equations
  publication-title: J. Comput. Phys.
– volume: 37
  start-page: A2710
  year: 2015
  end-page: A2732
  ident: br0450
  article-title: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations
  publication-title: SIAM J. Sci. Comput.
– volume: 477
  start-page: 20210458
  year: 2021
  ident: br0190
  article-title: Solution landscapes of the simplified Ericksen-Leslie model and its comparison with the reduced Landau-de Gennes model
  publication-title: Proc. R. Soc. A
– volume: 38
  start-page: A528
  year: 2016
  end-page: A544
  ident: br0470
  article-title: Optimization-based shrinking dimer method for finding transition states
  publication-title: SIAM J. Sci. Comput.
– volume: 34
  start-page: 2048
  year: 2021
  end-page: 2069
  ident: br0180
  article-title: Solution landscape of a reduced Landau–de Gennes model on a hexagon
  publication-title: Nonlinearity
– year: 2021
  ident: br0050
  article-title: The spatially variant fractional Laplacian
– year: 2003
  ident: br0030
  article-title: Introduction to Numerical Continuation Methods
– volume: 305
  start-page: 376
  year: 2016
  end-page: 404
  ident: br0290
  article-title: A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 84
  year: 2011
  ident: br0250
  article-title: Finding all the stationary points of a potential-energy landscape via numerical polynomial-homotopy-continuation method
  publication-title: Phys. Rev. E
– volume: 64
  start-page: 1801
  year: 2021
  end-page: 1816
  ident: br0410
  article-title: Searching the solution landscape by generalized high-index saddle dynamics
  publication-title: Sci. China Math.
– volume: 87
  start-page: 15
  year: 2021
  ident: br0270
  article-title: A fast algorithm for the variable-order spatial fractional advection-diffusion equation
  publication-title: J. Sci. Comput.
– year: 2003
  ident: br0020
  article-title: Sobolev Spaces
– volume: 47
  start-page: 1760
  year: 2009
  end-page: 1781
  ident: br0520
  article-title: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term
  publication-title: SIAM J. Numer. Anal.
– year: 1963
  ident: br0260
  article-title: Morse Theory
– volume: 430
  year: 2022
  ident: br0430
  article-title: Solution landscape of the Onsager model identifies non-axisymmetric critical points
  publication-title: Phys. D, Nonlin. Phenom.
– volume: 86
  start-page: 29
  year: 2021
  ident: br0510
  article-title: Optimal Petrov-Galerkin spectral approximation method for the fractional diffusion, advection, reaction equation on a bounded interval
  publication-title: J. Sci. Comput.
– volume: 157
  start-page: 47
  year: 2014
  end-page: 58
  ident: br0340
  article-title: Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media
  publication-title: J. Contam. Hydrol.
– volume: 24
  start-page: 1831
  year: 2011
  end-page: 1842
  ident: br0160
  article-title: The gentlest ascent dynamics
  publication-title: Nonlinearity
– volume: 252
  start-page: 495
  year: 2013
  end-page: 517
  ident: br0440
  article-title: Fractional Sturm-Liouville eigen-problems: theory and numerical approximation
  publication-title: J. Comput. Phys.
– volume: 405
  year: 2020
  ident: br0480
  article-title: A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations
  publication-title: J. Comput. Phys.
– volume: 19
  start-page: 19
  year: 2018
  end-page: 46
  ident: br0070
  article-title: Numerical methods for fractional diffusion
  publication-title: Comput. Vis. Sci.
– volume: 405
  year: 2020
  ident: 10.1016/j.jcp.2022.111513_br0480
  article-title: A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109141
– volume: 34
  start-page: 2048
  year: 2021
  ident: 10.1016/j.jcp.2022.111513_br0180
  article-title: Solution landscape of a reduced Landau–de Gennes model on a hexagon
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/abc5d4
– volume: 47
  start-page: 1760
  year: 2009
  ident: 10.1016/j.jcp.2022.111513_br0520
  article-title: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080730597
– volume: 47
  start-page: 1845
  year: 2013
  ident: 10.1016/j.jcp.2022.111513_br0120
  article-title: Local discontinuous Galerkin methods for fractional diffusion equations
  publication-title: ESAIM: M2AN
  doi: 10.1051/m2an/2013091
– volume: 63
  start-page: 317
  year: 2021
  ident: 10.1016/j.jcp.2022.111513_br0150
  article-title: Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes
  publication-title: SIAM Rev.
  doi: 10.1137/19M1243750
– volume: 62
  start-page: 199
  year: 2020
  ident: 10.1016/j.jcp.2022.111513_br0360
  article-title: Asymptotically compatible schemes for robust discretization of parametrized problems with applications to nonlocal models
  publication-title: SIAM Rev.
  doi: 10.1137/19M1296720
– year: 2022
  ident: 10.1016/j.jcp.2022.111513_br0100
  article-title: A fractional model for anomalous diffusion with increased variability: Analysis, algorithms and applications to interface problems
  publication-title: Numer. Methods Partial Differ. Eq.
  doi: 10.1002/num.22865
– volume: 157
  start-page: 47
  year: 2014
  ident: 10.1016/j.jcp.2022.111513_br0340
  article-title: Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2013.11.002
– volume: 30
  start-page: 765
  year: 2021
  ident: 10.1016/j.jcp.2022.111513_br0370
  article-title: Modeling and computation of liquid crystals
  publication-title: Acta Numer.
  doi: 10.1017/S0962492921000088
– ident: 10.1016/j.jcp.2022.111513_br0050
– volume: 39
  start-page: A1928
  year: 2017
  ident: 10.1016/j.jcp.2022.111513_br0240
  article-title: Hermite spectral methods for fractional PDEs in unbounded domains
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1097109
– volume: vol. 41
  year: 2011
  ident: 10.1016/j.jcp.2022.111513_br0300
  article-title: Spectral Methods: Algorithms, Analysis and Applications
– volume: 55
  start-page: 1689
  year: 2017
  ident: 10.1016/j.jcp.2022.111513_br0060
  article-title: Analysis and approximation of a fractional Cahn-Hilliard equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1075302
– volume: 384
  start-page: 253
  year: 2019
  ident: 10.1016/j.jcp.2022.111513_br0140
  article-title: A fractional phase-field model using an infinitesimal generator of α stable Lévy process
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.01.042
– year: 2003
  ident: 10.1016/j.jcp.2022.111513_br0030
– volume: 29
  start-page: 1
  year: 2020
  ident: 10.1016/j.jcp.2022.111513_br0110
  article-title: Numerical methods for nonlocal and fractional models
  publication-title: Acta Numer.
  doi: 10.1017/S096249292000001X
– volume: 37
  start-page: A2710
  year: 2015
  ident: 10.1016/j.jcp.2022.111513_br0450
  article-title: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/141001299
– volume: 38
  start-page: A528
  year: 2016
  ident: 10.1016/j.jcp.2022.111513_br0470
  article-title: Optimization-based shrinking dimer method for finding transition states
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140972676
– year: 2003
  ident: 10.1016/j.jcp.2022.111513_br0020
– volume: 364
  year: 2020
  ident: 10.1016/j.jcp.2022.111513_br0390
  article-title: Isogeometric collocation method for the fractional Laplacian in the 2D bounded domain
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.112936
– volume: 24
  start-page: 1831
  year: 2011
  ident: 10.1016/j.jcp.2022.111513_br0160
  article-title: The gentlest ascent dynamics
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/24/6/008
– volume: 55
  start-page: 472
  year: 2017
  ident: 10.1016/j.jcp.2022.111513_br0010
  article-title: A fractional Laplace equation: regularity of solutions and finite element approximations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/15M1033952
– volume: 58
  start-page: 2435
  year: 2020
  ident: 10.1016/j.jcp.2022.111513_br0310
  article-title: Fast Fourier-like mapped Chebyshev spectral-Galerkin methods for PDEs with integral fractional Laplacian in unbounded domains
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/19M128377X
– volume: 41
  start-page: A3576
  year: 2019
  ident: 10.1016/j.jcp.2022.111513_br0420
  article-title: High-index optimization-based shrinking dimer method for finding high-index saddle points
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1253356
– year: 1963
  ident: 10.1016/j.jcp.2022.111513_br0260
– volume: 87
  start-page: 15
  year: 2021
  ident: 10.1016/j.jcp.2022.111513_br0270
  article-title: A fast algorithm for the variable-order spatial fractional advection-diffusion equation
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01427-w
– volume: 305
  start-page: 376
  year: 2016
  ident: 10.1016/j.jcp.2022.111513_br0290
  article-title: A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.03.018
– year: 2003
  ident: 10.1016/j.jcp.2022.111513_br0380
– volume: 32
  start-page: 113
  year: 2002
  ident: 10.1016/j.jcp.2022.111513_br0080
  article-title: Phase-field models for microstructure evolution
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev.matsci.32.112001.132041
– volume: 64
  start-page: 1801
  year: 2021
  ident: 10.1016/j.jcp.2022.111513_br0410
  article-title: Searching the solution landscape by generalized high-index saddle dynamics
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-020-1737-1
– volume: 124
  year: 2020
  ident: 10.1016/j.jcp.2022.111513_br0400
  article-title: Construction of a pathway map on a complicated energy landscape
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.090601
– volume: 51
  start-page: 2479
  year: 2019
  ident: 10.1016/j.jcp.2022.111513_br0040
  article-title: Sobolev spaces with non-Muckenhoupt weights, fractional elliptic operators, and applications
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/18M1224970
– volume: 86
  start-page: 29
  year: 2021
  ident: 10.1016/j.jcp.2022.111513_br0510
  article-title: Optimal Petrov-Galerkin spectral approximation method for the fractional diffusion, advection, reaction equation on a bounded interval
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-020-01366-y
– volume: 299
  start-page: 196
  year: 2015
  ident: 10.1016/j.jcp.2022.111513_br0320
  article-title: Spectral direction splitting methods for two-dimensional space fractional diffusion equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.07.011
– start-page: 1
  year: 2021
  ident: 10.1016/j.jcp.2022.111513_br0230
  article-title: Fast computation of the multidimensional fractional Laplacian
  publication-title: Appl. Anal.
– volume: 98
  year: 2007
  ident: 10.1016/j.jcp.2022.111513_br0460
  article-title: Morphology of critical nuclei in solid-state phase transformations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.265703
– volume: 37
  start-page: A2026
  year: 2015
  ident: 10.1016/j.jcp.2022.111513_br0220
  article-title: Deflation techniques for finding distinct solutions of nonlinear partial differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140984798
– volume: 252
  start-page: 495
  year: 2013
  ident: 10.1016/j.jcp.2022.111513_br0440
  article-title: Fractional Sturm-Liouville eigen-problems: theory and numerical approximation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.06.031
– volume: 58
  start-page: 330
  year: 2020
  ident: 10.1016/j.jcp.2022.111513_br0500
  article-title: An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/19M1245621
– volume: 116
  start-page: 3777
  year: 2002
  ident: 10.1016/j.jcp.2022.111513_br0130
  article-title: Saddle points and dynamics of Lennard-Jones clusters, solids, and supercooled liquids
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1436470
– volume: 29
  start-page: 57
  year: 2002
  ident: 10.1016/j.jcp.2022.111513_br0200
  article-title: Variable order and distributed order fractional operators
  publication-title: Nonlinear Dyn.
  doi: 10.1023/A:1016586905654
– ident: 10.1016/j.jcp.2022.111513_br0210
– volume: 388
  start-page: 4586
  year: 2009
  ident: 10.1016/j.jcp.2022.111513_br0330
  article-title: Variable-order fractional differential operators in anomalous diffusion modeling
  publication-title: Phys. A, Stat. Mech. Appl.
  doi: 10.1016/j.physa.2009.07.024
– volume: 19
  start-page: 19
  year: 2018
  ident: 10.1016/j.jcp.2022.111513_br0070
  article-title: Numerical methods for fractional diffusion
  publication-title: Comput. Vis. Sci.
  doi: 10.1007/s00791-018-0289-y
– volume: 36
  start-page: 708
  year: 2014
  ident: 10.1016/j.jcp.2022.111513_br0280
  article-title: Two-phase fluid simulation using a diffuse interface model with Peng–Robinson equation of state
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130933745
– volume: 42
  start-page: A585
  year: 2020
  ident: 10.1016/j.jcp.2022.111513_br0350
  article-title: Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1244299
– volume: 101
  start-page: 1848
  year: 2022
  ident: 10.1016/j.jcp.2022.111513_br0490
  article-title: Variable-order space-fractional diffusion equations and a variable-order modification of constant-order fractional problems
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2020.1789596
– volume: 430
  year: 2022
  ident: 10.1016/j.jcp.2022.111513_br0430
  article-title: Solution landscape of the Onsager model identifies non-axisymmetric critical points
  publication-title: Phys. D, Nonlin. Phenom.
  doi: 10.1016/j.physd.2021.133081
– volume: 84
  year: 2011
  ident: 10.1016/j.jcp.2022.111513_br0250
  article-title: Finding all the stationary points of a potential-energy landscape via numerical polynomial-homotopy-continuation method
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.025702
– volume: 477
  start-page: 20210458
  year: 2021
  ident: 10.1016/j.jcp.2022.111513_br0190
  article-title: Solution landscapes of the simplified Ericksen-Leslie model and its comparison with the reduced Landau-de Gennes model
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2021.0458
– volume: 114
  start-page: 93
  year: 2019
  ident: 10.1016/j.jcp.2022.111513_br0090
  article-title: Well-posedness, regularity and asymptotic analyses for a fractional phase field system
  publication-title: Asymptot. Anal.
– volume: 278
  start-page: 294
  year: 2021
  ident: 10.1016/j.jcp.2022.111513_br0170
  article-title: Regularity of the solution to fractional diffusion, advection, reaction equations in weighted Sobolev spaces
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2020.12.034
SSID ssj0008548
Score 2.4919734
Snippet The nonlinear space-fractional problems often allow multiple stationary solutions, which can be much more complicated than the corresponding integer-order...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111513
SubjectTerms Algorithms
Approximation
Computational physics
Fractional Laplacian
Integers
Phase field
Saddle dynamics
Solution landscape
Stationary solution
Variable-order
Title Computing solution landscape of nonlinear space-fractional problems via fast approximation algorithm
URI https://dx.doi.org/10.1016/j.jcp.2022.111513
https://www.proquest.com/docview/2719034006
Volume 468
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AKRWK
  dateStart: 19660801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--xTc5eBKq2zya7HFZlFXRk4K3kKdW1JXdKp787U6aVFHQg_TUkoQwk3wzaeabQWgfLDALQvNCyErCAUXTQktbFrLqg7etA_Mu3uheXFaja3Z2w29m0LDjwsSwyoz9CdNbtM5fjrI0j57rOnJ8SeTQlyT-GBE8MsoZE7GKweH7V5iH5CyhcQxFgNbdzWYb43VvY8pKQiJw8JL-Zpt-oHRrek6W0EL2GfEgTWsZzfinFbSY_Uecd-d0FblUogGMEe5WFG6pvDHICY8Dfkp5MfQEA45YX4RJojXA4LmwzBS_1hoHPW1wm238rU7URqwfbseTurl7XEPXJ8dXw1GRqygUlhLeFIQK26eOWm4MtYwL54TvmT4tSy2DgMcEa6ljFRVUc1nZYMByel8G2gtwmllHszA9v4GwcVqwyhstjWY6lH0nqesFQk1JQN9hE_U6-SmbU4zHShcPqoslu1cgchVFrpLIN9HBZ5fnlF_jr8asU4r6tkgU4P9f3XY6Baq8Q6eKCHCFKCBYtfW_UbfRfHxLvMQdNNtMXvwuOCiN2WtX4B6aG5yejy4_AIao5qs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHMqlLS8VSsEHTpXCJn7E3mOFQMtj9wQSN8vPNogCyqaIE7-949gpKhJ7qHJLbMuasb8Zx_PNIHQAFpgFoXkhZC3hgKJpoaWtClmPwdvWgXkXb3Sns3pyxc6u-fUSOhq4MDGsMmN_wvQerfObUZbm6KFpIseXRA59ReKPEcHFO7TCOBHxBHb4_BLnITlLcBxjEaD5cLXZB3nd2JizkpCIHLyibxmnVzDd256TT-hDdhrx9zSvNbTk79bRx-xA4rw95xvIpRoNYI3wsKRwz-WNUU74PuC7lBhDtxiAxPoitInXAIPnyjJz_NhoHPS8w3268acmcRuxvv1x3zbdz1-b6Ork-PJoUuQyCoWlhHcFocKOqaOWG0Mt48I54UszplWlZRDwmGAtdaymgmouaxsMmE7vq0DLAMeZLbQM0_OfETZOC1Z7o6XRTIdq7CR1ZSDUVAQUHrZROchP2ZxjPJa6uFVDMNmNApGrKHKVRL6Nvv3t8pASbCxqzAalqH9WiQIDsKjb7qBAlbfoXBEBvhAFCKt3_m_UffR-cjm9UBens_MvaDV-SSTFXbTctb_9V_BWOrPXr8Y_7e3oQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+solution+landscape+of+nonlinear+space-fractional+problems+via+fast+approximation+algorithm&rft.jtitle=Journal+of+computational+physics&rft.au=Yu%2C+Bing&rft.au=Zheng%2C+Xiangcheng&rft.au=Zhang%2C+Pingwen&rft.au=Zhang%2C+Lei&rft.date=2022-11-01&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=468&rft_id=info:doi/10.1016%2Fj.jcp.2022.111513&rft.externalDocID=S0021999122005757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon