Computing solution landscape of nonlinear space-fractional problems via fast approximation algorithm
The nonlinear space-fractional problems often allow multiple stationary solutions, which can be much more complicated than the corresponding integer-order problems. In this paper, we systematically compute the solution landscapes of nonlinear constant/variable-order space-fractional problems on one-...
Saved in:
| Published in | Journal of computational physics Vol. 468; p. 111513 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cambridge
Elsevier Inc
01.11.2022
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9991 1090-2716 |
| DOI | 10.1016/j.jcp.2022.111513 |
Cover
| Summary: | The nonlinear space-fractional problems often allow multiple stationary solutions, which can be much more complicated than the corresponding integer-order problems. In this paper, we systematically compute the solution landscapes of nonlinear constant/variable-order space-fractional problems on one- and two-dimensional rectangular domains. A fast approximation algorithm is developed to deal with the variable-order spectral fractional Laplacian by approximating the variable-indexing Fourier modes, and then combined with saddle dynamics to construct the solution landscape of variable-order space-fractional phase field model. Numerical experiments are performed to substantiate the accuracy and efficiency of fast approximation algorithm and elucidate essential features of the stationary solutions of space-fractional phase field model. Furthermore, we demonstrate that the solution landscapes of spectral fractional Laplacian problems can be reconfigured by varying the diffusion coefficients in the corresponding integer-order problems.
•A fast approximation algorithm for variable-order spectral fractional Laplacian.•Construction of solution landscapes of space-fractional phase field models.•Reconfiguration of fractional Laplacian problems by integer-order problems. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0021-9991 1090-2716 |
| DOI: | 10.1016/j.jcp.2022.111513 |