Generalized Solutions of Degenerate Integro-Differential Equations in Banach Spaces

In this paper, we present a technique for constructing generalized solutions of the Cauchy problem for abstract integro-differential equations with degeneration in Banach spaces. A generalized solution is constructed as the convolution of the fundamental operator function (fundamental solution, infl...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 279; no. 5; pp. 710 - 722
Main Author Falaleev, M. V.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 23.03.2024
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1072-3374
1573-8795
DOI10.1007/s10958-024-07050-y

Cover

More Information
Summary:In this paper, we present a technique for constructing generalized solutions of the Cauchy problem for abstract integro-differential equations with degeneration in Banach spaces. A generalized solution is constructed as the convolution of the fundamental operator function (fundamental solution, influence function) of the integro-differential operator of the equation with a generalized function of a special form, which involves all input data of the original problem. Based on the analysis of the representation for the generalized solution, we obtain sufficient solvability conditions for the original Cauchy problem in the class of functions of finite smoothness. Under these sufficient conditions, the generalized solution constructed turns out to be a classical solution with the required smoothness. The abstract results obtained in the paper are applied to the study of applied initial-boundary-value problems from the theory of oscillations in viscoelastic media.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-024-07050-y