Low-density parity-check codes for 40-gb/s optical transmission systems

In this paper, we compare performance of three classes of forward error correction schemes for 40-Gb/s optical transmission systems. The first class is based on the concatenation of Reed-Solomon codes and this is employed in the state-of-the-art fiber-optics communication systems. The second class i...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in quantum electronics Vol. 12; no. 4; pp. 555 - 562
Main Authors Djordjevic, I.B., Sankaranarayanan, S., Chilappagari, S.K., Vasic, B.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1077-260X
1558-4542
DOI10.1109/JSTQE.2006.876182

Cover

More Information
Summary:In this paper, we compare performance of three classes of forward error correction schemes for 40-Gb/s optical transmission systems. The first class is based on the concatenation of Reed-Solomon codes and this is employed in the state-of-the-art fiber-optics communication systems. The second class is the turbo product codes with Bose-Chaudhuri-Hocquenghen component codes. The application of these codes in optical communication systems was extensively studied by Sab and Lemarie, and Mizuochi The third class is the low-density parity-check (LDPC) codes that have attracted much attention over the past decade. We present enhanced decoding algorithms for Turbo product codes and LDPC codes that use probability density function of output sequences instead of calculating initial likelihood ratios assuming (inaccurate) Gaussian or chi-square approximation. The analysis in this paper shows that the LDPC codes perform better than the other codes in the waterfall region at bit error rates as low as 10 -9 . We also presented error floors results obtained by analyzing decoding failures of hard-decision iterative decoders
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2006.876182