Extended Kalman Filter Based Learning Algorithm for Type-2 Fuzzy Logic Systems and Its Experimental Evaluation

In this paper, the use of extended Kalman filter for the optimization of the parameters of type-2 fuzzy logic systems is proposed. The type-2 fuzzy logic system considered in this study benefits from a novel type-2 fuzzy membership function which has certain values on both ends of the support and th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 59; no. 11; pp. 4443 - 4455
Main Authors Khanesar, M. A., Kayacan, E., Teshnehlab, M., Kaynak, O.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2011.2151822

Cover

More Information
Summary:In this paper, the use of extended Kalman filter for the optimization of the parameters of type-2 fuzzy logic systems is proposed. The type-2 fuzzy logic system considered in this study benefits from a novel type-2 fuzzy membership function which has certain values on both ends of the support and the kernel, and uncertain values on other parts of the support. To have a comparison of the extended Kalman filter with other existing methods in the literature, particle swarm optimization and gradient descent-based methods are used. The proposed type-2 fuzzy neuro structure is tested on different noisy input-output data sets, and it is shown that extended Kalman filter has a better performance as compared to the gradient descent-based methods. Although the performance of the proposed method is comparable with the particle swarm optimization method, it is faster and more efficient than the particle swarm optimization method. Moreover, the simulation results show that the proposed novel type-2 fuzzy membership function with the extended Kalman filter has noise rejection property. Kalman filter is also used to train the parameters of type-2 fuzzy logic system in a feedback error learning scheme. Then, it is used to control a real-time laboratory setup ABS and satisfactory results are obtained.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2011.2151822