Extended Kalman Filter Based Learning Algorithm for Type-2 Fuzzy Logic Systems and Its Experimental Evaluation
In this paper, the use of extended Kalman filter for the optimization of the parameters of type-2 fuzzy logic systems is proposed. The type-2 fuzzy logic system considered in this study benefits from a novel type-2 fuzzy membership function which has certain values on both ends of the support and th...
Saved in:
| Published in | IEEE transactions on industrial electronics (1982) Vol. 59; no. 11; pp. 4443 - 4455 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.11.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0046 1557-9948 |
| DOI | 10.1109/TIE.2011.2151822 |
Cover
| Summary: | In this paper, the use of extended Kalman filter for the optimization of the parameters of type-2 fuzzy logic systems is proposed. The type-2 fuzzy logic system considered in this study benefits from a novel type-2 fuzzy membership function which has certain values on both ends of the support and the kernel, and uncertain values on other parts of the support. To have a comparison of the extended Kalman filter with other existing methods in the literature, particle swarm optimization and gradient descent-based methods are used. The proposed type-2 fuzzy neuro structure is tested on different noisy input-output data sets, and it is shown that extended Kalman filter has a better performance as compared to the gradient descent-based methods. Although the performance of the proposed method is comparable with the particle swarm optimization method, it is faster and more efficient than the particle swarm optimization method. Moreover, the simulation results show that the proposed novel type-2 fuzzy membership function with the extended Kalman filter has noise rejection property. Kalman filter is also used to train the parameters of type-2 fuzzy logic system in a feedback error learning scheme. Then, it is used to control a real-time laboratory setup ABS and satisfactory results are obtained. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0278-0046 1557-9948 |
| DOI: | 10.1109/TIE.2011.2151822 |