A Two-Stage Data-Driven-Based Prognostic Approach for Bearing Degradation Problem
Prognostics of the remaining useful life (RUL) has emerged as a critical technique for ensuring the safety, availability, and efficiency of a complex system. To gain a better prognostic result, degradation information is quite useful because it can reflect the health status of a system. However, due...
Saved in:
| Published in | IEEE transactions on industrial informatics Vol. 12; no. 3; pp. 924 - 932 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1551-3203 1941-0050 |
| DOI | 10.1109/TII.2016.2535368 |
Cover
| Summary: | Prognostics of the remaining useful life (RUL) has emerged as a critical technique for ensuring the safety, availability, and efficiency of a complex system. To gain a better prognostic result, degradation information is quite useful because it can reflect the health status of a system. However, due to the lack of accurate information about the plants' degradation, the prognostic model is usually not well established. To solve this problem, this paper proposes a two-stage strategy that is in the context of data-driven modeling to predict the future health status of a bearing, where the degradation information was estimated by calculating the deviation of multiple statistics of vibration signals of a bearing from a known healthy state. Then, a prediction stage based on an enhanced Kalman filter and an expectation-maximization algorithm were used to estimate the RUL of the bearing adaptively. To verify the effectiveness of the proposed approach, a real-bearing degradation problem was implemented. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1551-3203 1941-0050 |
| DOI: | 10.1109/TII.2016.2535368 |