Numerical Synthesis of an Optimal Low-Sidelobe Beam Pattern for a Microphone Array

This letter describes a numerical algorithm for synthesizing optimal low-sidelobe beampatterns. The pattern synthesis problem is formulated as a constrained optimization that minimizes the spatially weighted energy arriving at the array subject to unit gain in the look direction and a constant sidel...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 21; no. 8; pp. 914 - 917
Main Authors Yoomi Hur, Young-Cheol Park, Abel, Jonathan S., Dae Hee Youn
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1070-9908
1558-2361
DOI10.1109/LSP.2014.2320916

Cover

More Information
Summary:This letter describes a numerical algorithm for synthesizing optimal low-sidelobe beampatterns. The pattern synthesis problem is formulated as a constrained optimization that minimizes the spatially weighted energy arriving at the array subject to unit gain in the look direction and a constant sidelobe level. The weighting takes on the form of a sensor correlation matrix, parameterized between uncorrelated sensor noise and correlated signal arrival terms according to a balancing factor. Setting the balancing factor to its extreme values of 0 and 1, produces, respectively, the optimal Riblet-Chebyshev and Delay-and-Sum type beamformers. In between, the method generates a low-sidelobe beamformer with varying beamwidths that provides a trade-off between White Noise Gain and Directivity Index. Simulation examples demonstrate optimal and intermediate designs for uniform and non-uniform sensor spacings.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2014.2320916