Using machine learning techniques for early prediction of tracheal intubation in patients with septic shock: a multi-center study in South Korea

Background: Patients with septic shock frequently require tracheal intubation in the emergency department (ED). However, the criteria for tracheal intubation are subjective, based on physician experience, or require serial evaluations over relatively long intervals to make accurate predictions, whic...

Full description

Saved in:
Bibliographic Details
Published inAcute and critical care Vol. 40; no. 2; pp. 221 - 234
Main Authors Heo, Ji Han, Kim, Taegyun, Shin, Tae Gun, Suh, Gil Joon, Kwon, Woon Yong, Kim, Hayoung, Park, Heesu, Kim, Heejun, Han, Sol
Format Journal Article
LanguageEnglish
Published Korea (South) Korean Society of Critical Care Medicine 01.05.2025
대한중환자의학회
Subjects
Online AccessGet full text
ISSN2586-6052
2586-6060
2586-6060
DOI10.4266/acc.004776

Cover

Abstract Background: Patients with septic shock frequently require tracheal intubation in the emergency department (ED). However, the criteria for tracheal intubation are subjective, based on physician experience, or require serial evaluations over relatively long intervals to make accurate predictions, which might not be feasible in the ED. We used supervised learning approaches and features routinely available during the initial stages of evaluation and resuscitation to stratify the risks of tracheal intubation within a 24-hour time window.Methods: We retrospectively analyzed the data of patients diagnosed with septic shock based on the SEPSIS-3 criteria across 21 university hospital EDs in the Republic of Korea. A principal component analysis revealed a complex, non-linear decision boundary with respect to the application of tracheal intubation within a 24-hour time window. Stratified five-fold cross validation and a grid search were used with extreme gradient boost. Shapley values were calculated to explain feature importance and preferences.Results: In total, data for 4,762 patients were analyzed; within that population, 1,486 (31%) were intubated within a 24-hour window, and 3,276 (69%) were not. The area under the receiver operating characteristic curve and F1 scores for intubation within a 24-hour window were 0.829 (95% CI, 0.801–0.878) and 0.654 (95% CI, 0.627–0.681), respectively. The Shapley values identified lactate level after initial fluids, suspected lung infection, initial pH, Sequential Organ Failure Assessment score at enrollment, and respiratory rate at enrollment as important features for prediction. Conclusions: An extreme gradient boosting machine can moderately discriminate whether intubation is warranted within 24 hours of the recognition of septic shock in the ED.
AbstractList Background Patients with septic shock frequently require tracheal intubation in the emergency department (ED). However, the criteria for tracheal intubation are subjective, based on physician experience, or require serial evaluations over relatively long intervals to make accurate predictions, which might not be feasible in the ED. We used supervised learning approaches and features routinely available during the initial stages of evaluation and resuscitation to stratify the risks of tracheal intubation within a 24-hour time window. Methods We retrospectively analyzed the data of patients diagnosed with septic shock based on the SEPSIS-3 criteria across 21 university hospital EDs in the Republic of Korea. A principal component analysis revealed a complex, non-linear decision boundary with respect to the application of tracheal intubation within a 24-hour time window. Stratified five-fold cross validation and a grid search were used with extreme gradient boost. Shapley values were calculated to explain feature importance and preferences. Results In total, data for 4,762 patients were analyzed; within that population, 1,486 (31%) were intubated within a 24-hour window, and 3,276 (69%) were not. The area under the receiver operating characteristic curve and F1 scores for intubation within a 24-hour window were 0.829 (95% CI, 0.801–0.878) and 0.654 (95% CI, 0.627–0.681), respectively. The Shapley values identified lactate level after initial fluids, suspected lung infection, initial pH, Sequential Organ Failure Assessment score at enrollment, and respiratory rate at enrollment as important features for prediction. Conclusions An extreme gradient boosting machine can moderately discriminate whether intubation is warranted within 24 hours of the recognition of septic shock in the ED.
Patients with septic shock frequently require tracheal intubation in the emergency department (ED). However, the criteria for tracheal intubation are subjective, based on physician experience, or require serial evaluations over relatively long intervals to make accurate predictions, which might not be feasible in the ED. We used supervised learning approaches and features routinely available during the initial stages of evaluation and resuscitation to stratify the risks of tracheal intubation within a 24-hour time window. We retrospectively analyzed the data of patients diagnosed with septic shock based on the SEPSIS-3 criteria across 21 university hospital EDs in the Republic of Korea. A principal component analysis revealed a complex, non-linear decision boundary with respect to the application of tracheal intubation within a 24-hour time window. Stratified five-fold cross validation and a grid search were used with extreme gradient boost. Shapley values were calculated to explain feature importance and preferences. In total, data for 4,762 patients were analyzed; within that population, 1,486 (31%) were intubated within a 24-hour window, and 3,276 (69%) were not. The area under the receiver operating characteristic curve and F1 scores for intubation within a 24-hour window were 0.829 (95% CI, 0.801-0.878) and 0.654 (95% CI, 0.627-0.681), respectively. The Shapley values identified lactate level after initial fluids, suspected lung infection, initial pH, Sequential Organ Failure Assessment score at enrollment, and respiratory rate at enrollment as important features for prediction. An extreme gradient boosting machine can moderately discriminate whether intubation is warranted within 24 hours of the recognition of septic shock in the ED.
Background: Patients with septic shock frequently require tracheal intubation in the emergency department (ED). However, the criteria for tracheal intubation are subjective, based on physician experience, or require serial evaluations over relatively long intervals to make accurate predictions, which might not be feasible in the ED. We used supervised learning approaches and features routinely available during the initial stages of evaluation and resuscitation to stratify the risks of tracheal intubation within a 24-hour time window.Methods: We retrospectively analyzed the data of patients diagnosed with septic shock based on the SEPSIS-3 criteria across 21 university hospital EDs in the Republic of Korea. A principal component analysis revealed a complex, non-linear decision boundary with respect to the application of tracheal intubation within a 24-hour time window. Stratified five-fold cross validation and a grid search were used with extreme gradient boost. Shapley values were calculated to explain feature importance and preferences.Results: In total, data for 4,762 patients were analyzed; within that population, 1,486 (31%) were intubated within a 24-hour window, and 3,276 (69%) were not. The area under the receiver operating characteristic curve and F1 scores for intubation within a 24-hour window were 0.829 (95% CI, 0.801–0.878) and 0.654 (95% CI, 0.627–0.681), respectively. The Shapley values identified lactate level after initial fluids, suspected lung infection, initial pH, Sequential Organ Failure Assessment score at enrollment, and respiratory rate at enrollment as important features for prediction. Conclusions: An extreme gradient boosting machine can moderately discriminate whether intubation is warranted within 24 hours of the recognition of septic shock in the ED. KCI Citation Count: 0
Author Shin, Tae Gun
Suh, Gil Joon
Kwon, Woon Yong
Han, Sol
Kim, Hayoung
Kim, Heejun
Kim, Taegyun
Park, Heesu
Heo, Ji Han
Author_xml – sequence: 1
  givenname: Ji Han
  orcidid: 0000-0001-7859-9058
  surname: Heo
  fullname: Heo, Ji Han
– sequence: 2
  givenname: Taegyun
  orcidid: 0000-0002-3770-3944
  surname: Kim
  fullname: Kim, Taegyun
– sequence: 3
  givenname: Tae Gun
  orcidid: 0000-0001-9657-1040
  surname: Shin
  fullname: Shin, Tae Gun
– sequence: 4
  givenname: Gil Joon
  orcidid: 0000-0001-5163-2217
  surname: Suh
  fullname: Suh, Gil Joon
– sequence: 5
  givenname: Woon Yong
  orcidid: 0000-0002-3343-5030
  surname: Kwon
  fullname: Kwon, Woon Yong
– sequence: 6
  givenname: Hayoung
  orcidid: 0000-0002-6638-6239
  surname: Kim
  fullname: Kim, Hayoung
– sequence: 7
  givenname: Heesu
  orcidid: 0000-0001-7005-415X
  surname: Park
  fullname: Park, Heesu
– sequence: 8
  givenname: Heejun
  orcidid: 0009-0006-1170-9631
  surname: Kim
  fullname: Kim, Heejun
– sequence: 9
  givenname: Sol
  orcidid: 0000-0002-9574-8518
  surname: Han
  fullname: Han, Sol
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40302563$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003205684$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9Uk1vEzEQtVARLaEXfgDymWqLv9ab5YKqio-ISkjQnq1Z72ziZmMv9i5V_gU_GSeBQC-cZvT83tPMPD8nJz54JOQlZ5dKaP0GrL1kTFWVfkLORDnXhWaanRz7UpyS85TuGWOCcamlfEZOFZNMlFqekZ93yfkl3YBdOY-0R4h-B4xoV959nzDRLkSa4X5Lh4its6MLnoaOjjGLEHrq_Dg1sIedp0Pu0I-JPrhxRRMOo7M0rYJdv6VAN1M_usJmAkaaxqnd7jTfwpS5n0NEeEGedtAnPP9dZ-Tuw_vb60_FzZePi-urm8JKIXUhmxZFaxtdibZrsbFQ6bqeK1mC7qpKWJAoua3rtoSOzy1WVknGdIOK2VJYOSOvD74-dmZtnQng9nUZzDqaq6-3C8NZxUuRTzYjiwO5DXBvhug2ELd7xR4IcWkg5j17NAilKrWq57VQyioOgkPFGsHRNkJ1KntdHLwmP8D2Afr-aMiZ2WVqcqbmkGlmvzuwh6nZYLs7XIT-0QiPX7xb5RV-GC54ySslssOrfx2O0j9_4O8lbAwpRez-N88vwuLFRQ
Cites_doi 10.1016/j.jcrc.2018.06.012
10.1001/jama.2016.0287
10.1016/j.jcrc.2016.05.022
10.1016/j.jcrc.2020.08.008
10.1111/j.1600-0587.2012.07348.x
10.1186/s13054-024-05064-1
10.1186/s13054-022-03899-0
10.1038/s41598-024-73461-1
10.1016/j.mayocp.2017.07.001
10.1016/j.jcrc.2015.09.032
10.1186/s12871-021-01471-x
10.1186/s13613-020-00668-6
10.1186/s13054-022-04060-7
10.15441/ceem.17.204
10.1186/s13054-022-04029-6
10.1056/nejmoa1401602
10.1097/jto.0b013e3181ec173d
10.1007/s00134-017-4896-8
10.1016/j.cmpb.2020.105869
10.1016/j.ccc.2017.08.005
10.1016/j.ajem.2024.01.044
10.15441/ceem.23.145
10.1097/ccm.0000000000002818
10.1016/j.ajem.2017.11.007
10.1186/s12890-022-02096-7
10.1007/s00134-016-4601-3
10.15441/ceem.23.065
10.1007/s00134-021-06506-y
10.1056/NEJMoa1500896
10.4266/acc.2021.00857
ContentType Journal Article
Copyright 2025 The Korean Society of Critical Care Medicine 2025
Copyright_xml – notice: 2025 The Korean Society of Critical Care Medicine 2025
CorporateAuthor the Korean Shock Society
CorporateAuthor_xml – name: the Korean Shock Society
DBID AAYXX
CITATION
NPM
5PM
ADTOC
UNPAY
DOA
ACYCR
DOI 10.4266/acc.004776
DatabaseName CrossRef
PubMed
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
PubMed
DatabaseTitleList
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (selected full-text)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2586-6060
EndPage 234
ExternalDocumentID oai_kci_go_kr_ARTI_10715263
oai_doaj_org_article_ea54564989244c41a21a70b21ecb24f4
10.4266/acc.004776
PMC12151742
40302563
10_4266_acc_004776
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Health and Welfare
  grantid: RS2024-00398566
GroupedDBID 53G
AAYXX
ABDBF
ACUHS
ACYCR
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
ESX
GROUPED_DOAJ
HYE
OK1
PGMZT
RPM
TUS
NPM
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c3236-3bde2dcb672dfdebca76998435a6f772ca3e31c99d5af18ce7c43006be40c52c3
IEDL.DBID UNPAY
ISSN 2586-6052
2586-6060
IngestDate Thu Jun 26 03:50:21 EDT 2025
Wed Aug 27 01:29:21 EDT 2025
Mon Sep 15 08:23:30 EDT 2025
Thu Aug 21 18:24:49 EDT 2025
Sat Jun 14 01:31:04 EDT 2025
Wed Oct 01 05:57:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords machine learning
intubation
septic shock
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3236-3bde2dcb672dfdebca76998435a6f772ca3e31c99d5af18ce7c43006be40c52c3
Notes Current affiliation: Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Korea
https://doi.org/10.4266/acc.004776
ORCID 0000-0001-7005-415X
0000-0002-3770-3944
0000-0002-9574-8518
0000-0002-6638-6239
0000-0001-9657-1040
0000-0001-5163-2217
0000-0001-7859-9058
0000-0002-3343-5030
0009-0006-1170-9631
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.4266/acc.004776
PMID 40302563
PageCount 14
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10715263
doaj_primary_oai_doaj_org_article_ea54564989244c41a21a70b21ecb24f4
unpaywall_primary_10_4266_acc_004776
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12151742
pubmed_primary_40302563
crossref_primary_10_4266_acc_004776
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
PublicationTitle Acute and critical care
PublicationTitleAlternate Acute Crit Care
PublicationYear 2025
Publisher Korean Society of Critical Care Medicine
대한중환자의학회
Publisher_xml – name: Korean Society of Critical Care Medicine
– name: 대한중환자의학회
References ref13
ref12
ref15
ref14
ref31
Lundberg (ref17) 2017
ref30
ref11
ref10
ref32
ref2
ref1
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
Chen (ref16) 2016
ref3
ref6
ref5
References_xml – ident: ref31
  doi: 10.1016/j.jcrc.2018.06.012
– ident: ref12
  doi: 10.1001/jama.2016.0287
– ident: ref19
  doi: 10.1016/j.jcrc.2016.05.022
– ident: ref21
  doi: 10.1016/j.jcrc.2020.08.008
– ident: ref15
  doi: 10.1111/j.1600-0587.2012.07348.x
– ident: ref27
  doi: 10.1186/s13054-024-05064-1
– ident: ref4
  doi: 10.1186/s13054-022-03899-0
– ident: ref24
  doi: 10.1038/s41598-024-73461-1
– ident: ref13
  doi: 10.1016/j.mayocp.2017.07.001
– ident: ref7
  doi: 10.1016/j.jcrc.2015.09.032
– ident: ref25
  doi: 10.1186/s12871-021-01471-x
– ident: ref14
  doi: 10.1186/s13613-020-00668-6
– ident: ref32
  doi: 10.1186/s13054-022-04060-7
– ident: ref9
  doi: 10.15441/ceem.17.204
– ident: ref26
  doi: 10.1186/s13054-022-04029-6
– ident: ref10
  doi: 10.1056/nejmoa1401602
– ident: ref18
  doi: 10.1097/jto.0b013e3181ec173d
– ident: ref6
  doi: 10.1007/s00134-017-4896-8
– start-page: 4768
  volume-title: A unified approach to interpreting model predictions
  year: 2017
  ident: ref17
– ident: ref29
  doi: 10.1016/j.cmpb.2020.105869
– ident: ref1
  doi: 10.1016/j.ccc.2017.08.005
– ident: ref22
  doi: 10.1016/j.ajem.2024.01.044
– ident: ref30
  doi: 10.15441/ceem.23.145
– ident: ref5
  doi: 10.1097/ccm.0000000000002818
– ident: ref8
  doi: 10.1016/j.ajem.2017.11.007
– ident: ref28
  doi: 10.1186/s12890-022-02096-7
– start-page: 785
  volume-title: XGBoost: a scalable tree boosting system
  year: 2016
  ident: ref16
– ident: ref20
  doi: 10.1007/s00134-016-4601-3
– ident: ref3
  doi: 10.15441/ceem.23.065
– ident: ref2
  doi: 10.1007/s00134-021-06506-y
– ident: ref11
  doi: 10.1056/NEJMoa1500896
– ident: ref23
  doi: 10.4266/acc.2021.00857
SSID ssj0002013633
ssib044728069
Score 2.2936156
Snippet Background: Patients with septic shock frequently require tracheal intubation in the emergency department (ED). However, the criteria for tracheal intubation...
Patients with septic shock frequently require tracheal intubation in the emergency department (ED). However, the criteria for tracheal intubation are...
Background Patients with septic shock frequently require tracheal intubation in the emergency department (ED). However, the criteria for tracheal intubation...
SourceID nrf
doaj
unpaywall
pubmedcentral
pubmed
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 221
SubjectTerms intubation
machine learning
Original
septic shock
마취과학
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQB9pLVfq5pVQjwdVl4zhf3Aoqoq3gVCRulj22YQXNrrKgqv-iP5kZJ6yyPbSXnhIlcRxnJn5vkskbIfYxrzJbTaeyCpmVuqmDdNpH6evoVWOZg_CPwmfn5emF_npZXI5KfXFOWC8P3N-4g2AZ4-kkFCho1JlVfG6nsoBO6ZiUQAnGRsEUeZLWXHWpL52d5mTF0mSprrwq6lISh1e9VikD1IFF_MiyiSw8MkKnJOJPmNN2cYRPf-ZOPrlvF_bXT3t7OwKmk-fi2cAo4VM_km2xEdoXYuts-Gb-UvxOWQHwI2VNBhjKRFzBSr11CURcIbDSMSw6bsfGgnkE6hqZScKMkMklG9IqDFqsS-CXuLDkvBiE5TXNrIdgIaUoSr7w0EFSr-U2qVQffJsTR30lLk4-fz8-lUMdBom5ykuZOx-UR1dWykfP2VNVSVEaES1bRmLnaPlNKjaNL2zMagwV6pyeZhf0FAuF-Wux2c7b8FaAKzJq5QgEfaN1iJYClLxSGm1D1KWeTsTe4_03i15uw1CYwlYyZCXTW2kijtg0qyNYIjttIMcxg-OYfzkOdUWGNTc4S-15eTU3N52hQOILdVoRsynziXjT23vVmaZpkXgi7anXPGHtatb3tLPrJNzNSh4UAaqJ2F85zV-G-e5_DHNHPFVcsjjlaL4Xm3fdfdglHnXnPqRH5gEtrhld
  priority: 102
  providerName: Directory of Open Access Journals
Title Using machine learning techniques for early prediction of tracheal intubation in patients with septic shock: a multi-center study in South Korea
URI https://www.ncbi.nlm.nih.gov/pubmed/40302563
https://pubmed.ncbi.nlm.nih.gov/PMC12151742
https://doi.org/10.4266/acc.004776
https://doaj.org/article/ea54564989244c41a21a70b21ecb24f4
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003205684
UnpaywallVersion publishedVersion
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Acute and Critical Care, 2025, 40(2), , pp.221-234
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (selected full-text)
  customDbUrl:
  eissn: 2586-6060
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002013633
  issn: 2586-6060
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2586-6060
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002013633
  issn: 2586-6060
  databaseCode: ABDBF
  dateStart: 20180201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2586-6060
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044728069
  issn: 2586-6052
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Selected Fulltext)
  customDbUrl:
  eissn: 2586-6060
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002013633
  issn: 2586-6060
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTgJeGL8pg-kEe01JHMdJ9rZNTAO0iQcqjafIdpyt6kirtBWCv4I_mTsnLW0fJp4SJTk59p1z39mX7wAObZxGOg3DIHWRDmSeucDIsgrKrCpFrhmD8I_CF5fqfCg_XyVXO_Bu-S_M2v49-44P2toBMxqm6h7sKt5E6sHu8PLr8XeuGpdkKiA8Lv6dq7DlIN0S3vA6npyffEndVGt-Zzsn8sGinupfP_Xt7ZrDOduD0-Wrtnkm48Fibgb29xaL4919eQyPOryJx62BPIEdVz-F-xfdjvoz-ONzBvCHz6l02BWRuMYVt-sMCdaiYx5knDYsx6rESYXUAcs4E0fkt4zXMJ1ix9Q6Q17ixRlnzVic3dB39wg1-gTGgLvvGvTctizjC_nhlwkh2OcwPPv47fQ86Ko0BDYWsQpiUzpRWqNSUVYl51alimI4gmFaVYTdreZ1VpvnZaKrKLMutTKmuW6cDG0ibPwCevWkdq8ATRKRlCEXWeZSukpT-BKnQlqdE7DJwj68X2qxmLZkHAUFMTy4BQ1u0Q5uH05YwasnmEDbXyBdFN18LJxm6Ei2SfGntDLSgk3WiMhZI2QlqSkyj2JsR16ej9eTYtwUFGZ8okZTwj0q7sPL1mpWjUn6aBKKpDvZhj1tvM3mnXp042m9meeD4kPRh8OV6d3Rzdf_99g-PBRcstjnaL6B3rxZuLeEo-bmwK8_HHTT6S9Ijht-
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VVAIuvAspD42gVwd7vV7bvbUVVQG14kCkcrJ21-s2SnEiJxGCX8FPZmbtpEkOFSdbtkf7mFnPN97xNwAHNk4jnYZhkLpIBzLPXGBkWQVlVpUi14xB-Efh8wt1NpRfLpPLHXi__Bdmbf-efcdHbe2AGQ1TdQ92FW8i9WB3ePHt6AdXjUsyFRAeF7fnKmw5SLeEN7yOJ-cnX1I31Zrf2c6JfLCop_r3L31zs-ZwTh_DybKrbZ7JeLCYm4H9s8XiePdYnsCjDm_iUWsgT2HH1c_g_nm3o_4c_vqcAfzpcyoddkUkrnDF7TpDgrXomAcZpw3LsSpxUiENwDLOxBH5LeM1TKfYMbXOkD_x4oyzZizOrum9e4gafQJjwMN3DXpuW5bxhfzw64QQ7AsYnn76fnIWdFUaAhuLWAWxKZ0orVGpKKuSc6tSRTEcwTCtKsLuVvN3VpvnZaKrKLMutTKmtW6cDG0ibLwHvXpSu1eAJolIypCLLHMpXaUpfIlTIa3OCdhkYR8-LLVYTFsyjoKCGJ7cgia3aCe3D8es4NUTTKDtL5Auim49Fk4zdCTbpPhTWhlpwSZrROSsEbKS1BSZRzG2Iy_Px6tJMW4KCjM-U6Mp4R4V9-FlazWrxiS9NAlF0p1sw542erN5px5de1pv5vmg-FD04WBlencMc___HnsNDwWXLPY5mm-gN28W7i3hqLl51y2kf6lWGok
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+machine+learning+techniques+for+early+prediction+of+tracheal+intubation+in+patients+with+septic+shock%3A+a+multi-center+study+in+South+Korea&rft.jtitle=Acute+and+critical+care&rft.au=%ED%97%88%EC%A7%80%ED%95%9C&rft.au=%EA%B9%80%ED%83%9C%EA%B7%A0&rft.au=%EC%8B%A0%ED%83%9C%EA%B1%B4&rft.au=%EC%84%9C%EA%B8%B8%EC%A4%80&rft.date=2025-05-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A4%91%ED%99%98%EC%9E%90%EC%9D%98%ED%95%99%ED%9A%8C&rft.issn=2586-6052&rft.eissn=2586-6060&rft.spage=221&rft.epage=234&rft_id=info:doi/10.4266%2Facc.004776&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10715263
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2586-6052&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2586-6052&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2586-6052&client=summon