Using machine learning techniques for early prediction of tracheal intubation in patients with septic shock: a multi-center study in South Korea
Background: Patients with septic shock frequently require tracheal intubation in the emergency department (ED). However, the criteria for tracheal intubation are subjective, based on physician experience, or require serial evaluations over relatively long intervals to make accurate predictions, whic...
Saved in:
Published in | Acute and critical care Vol. 40; no. 2; pp. 221 - 234 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Korea (South)
Korean Society of Critical Care Medicine
01.05.2025
대한중환자의학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2586-6052 2586-6060 |
DOI | 10.4266/acc.004776 |
Cover
Summary: | Background: Patients with septic shock frequently require tracheal intubation in the emergency department (ED). However, the criteria for tracheal intubation are subjective, based on physician experience, or require serial evaluations over relatively long intervals to make accurate predictions, which might not be feasible in the ED. We used supervised learning approaches and features routinely available during the initial stages of evaluation and resuscitation to stratify the risks of tracheal intubation within a 24-hour time window.Methods: We retrospectively analyzed the data of patients diagnosed with septic shock based on the SEPSIS-3 criteria across 21 university hospital EDs in the Republic of Korea. A principal component analysis revealed a complex, non-linear decision boundary with respect to the application of tracheal intubation within a 24-hour time window. Stratified five-fold cross validation and a grid search were used with extreme gradient boost. Shapley values were calculated to explain feature importance and preferences.Results: In total, data for 4,762 patients were analyzed; within that population, 1,486 (31%) were intubated within a 24-hour window, and 3,276 (69%) were not. The area under the receiver operating characteristic curve and F1 scores for intubation within a 24-hour window were 0.829 (95% CI, 0.801–0.878) and 0.654 (95% CI, 0.627–0.681), respectively. The Shapley values identified lactate level after initial fluids, suspected lung infection, initial pH, Sequential Organ Failure Assessment score at enrollment, and respiratory rate at enrollment as important features for prediction. Conclusions: An extreme gradient boosting machine can moderately discriminate whether intubation is warranted within 24 hours of the recognition of septic shock in the ED. |
---|---|
Bibliography: | Current affiliation: Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Korea https://doi.org/10.4266/acc.004776 |
ISSN: | 2586-6052 2586-6060 |
DOI: | 10.4266/acc.004776 |