Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography

Electrical impedance tomography aims at reconstructing the conductivity inside a physical body from boundary measurements of current and voltage at a finite number of contact electrodes. In many practical applications, the shape of the imaged object is subject to considerable uncertainties that rend...

Full description

Saved in:
Bibliographic Details
Published inInverse problems Vol. 33; no. 3; pp. 35006 - 35028
Main Authors Hyvönen, N, Majander, H, Staboulis, S
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.03.2017
Subjects
Online AccessGet full text
ISSN0266-5611
1361-6420
1361-6420
DOI10.1088/1361-6420/aa59d0

Cover

More Information
Summary:Electrical impedance tomography aims at reconstructing the conductivity inside a physical body from boundary measurements of current and voltage at a finite number of contact electrodes. In many practical applications, the shape of the imaged object is subject to considerable uncertainties that render reconstructing the internal conductivity impossible if they are not taken into account. This work numerically demonstrates that one can compensate for inaccurate modeling of the object boundary in two spatial dimensions by finding compatible locations and sizes for the electrodes as a part of a reconstruction algorithm. The numerical studies, which are based on both simulated and experimental data, are complemented by proving that the employed complete electrode model is approximately conformally invariant, which suggests that the obtained reconstructions in mismodeled domains reflect conformal images of the true targets. The numerical experiments also confirm that a similar approach does not, in general, lead to a functional algorithm in three dimensions.
Bibliography:IP-101066.R1
ISSN:0266-5611
1361-6420
1361-6420
DOI:10.1088/1361-6420/aa59d0