Overview of the EEG-Based Classification of Motor Imagery Activities Using Machine Learning Methods and Inference Acceleration with FPGA-Based Cards
In this article, we provide a brief overview of the EEG-based classification of motor imagery activities using machine learning methods. We examined the effect of data segmentation and different neural network structures. By applying proper window size and using a purely convolutional neural network...
Saved in:
| Published in | Electronics (Basel) Vol. 11; no. 15; p. 2293 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.08.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics11152293 |
Cover
| Summary: | In this article, we provide a brief overview of the EEG-based classification of motor imagery activities using machine learning methods. We examined the effect of data segmentation and different neural network structures. By applying proper window size and using a purely convolutional neural network, we achieved 97.7% recognition accuracy on data from twenty subjects in three classes. The proposed architecture outperforms several networks used in previous research and makes the motor imagery-based BCI more efficient in some applications. In addition, we examined the performance of the neural network on a FPGA-based card and compared it with the inference speed and accuracy provided by a general-purpose processor. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2079-9292 2079-9292 |
| DOI: | 10.3390/electronics11152293 |