Power-Efficient RAM Mapping Algorithms for FPGA Embedded Memory Blocks
Contemporary field-programmable gate array (FPGA) design requires a spectrum of available physical resources. As FPGA logic capacity has grown, locally accessed FPGA embedded memory blocks have increased in importance. When targeting FPGAs, application designers often specify high-level memory funct...
Saved in:
| Published in | IEEE transactions on computer-aided design of integrated circuits and systems Vol. 26; no. 2; pp. 278 - 290 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.02.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0070 1937-4151 |
| DOI | 10.1109/TCAD.2006.887924 |
Cover
| Summary: | Contemporary field-programmable gate array (FPGA) design requires a spectrum of available physical resources. As FPGA logic capacity has grown, locally accessed FPGA embedded memory blocks have increased in importance. When targeting FPGAs, application designers often specify high-level memory functions, which exhibit a range of sizes and control structures. These logical memories must be mapped to FPGA embedded memory resources such that physical design objectives are met. In this paper, a set of power-efficient logical-to-physical RAM mapping algorithms is described, which converts user-defined memory specifications to on-chip FPGA memory block resources. These algorithms minimize RAM dynamic power by evaluating a range of possible embedded memory block mappings and selecting the most power-efficient choice. Our automated approach has been validated with both simulation of power dissipation and measurements of power dissipation on FPGA hardware. A comparison of measured power reductions to values determined via simulation confirms the accuracy of our simulation approach. Our power-aware RAM mapping algorithms have been integrated into a commercial FPGA compiler and tested with 34 large FPGA benchmarks. Through experimentation, we show that, on average, embedded memory dynamic power can be reduced by 26% and overall core dynamic power can be reduced by 6% with a minimal loss (1%) in design performance. In addition, it is shown that the availability of multiple embedded memory block sizes in an FPGA reduces embedded memory dynamic power by an additional 9.6% by giving more choices to the computer-aided design algorithms |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0278-0070 1937-4151 |
| DOI: | 10.1109/TCAD.2006.887924 |