AN HARDY ESTIMATE FOR COMMUTATORS OF PSEUDO-DIFFERENTIAL OPERATORS
LetTbe a pseudo-differential operator whose symbol belongs to the Hörmander class S p , δ m with 0 ≤δ< 1, 0 <ρ≤ 1,δ≤ρand −(n+ 1) <m≤ −(n+ 1)(1 −ρ). In present paper, we prove that ifbis a locally integrable function satisfying sup balls B ⊂ ℝ n log ( e + 1 / | B | ) ( 1 + | B | ) θ 1 | B...
Saved in:
Published in | Taiwanese journal of mathematics Vol. 19; no. 4; pp. 1097 - 1109 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Mathematical Society of the Republic of China
01.08.2015
|
Online Access | Get full text |
ISSN | 1027-5487 2224-6851 |
DOI | 10.11650/tjm.19.2015.5003 |
Cover
Summary: | LetTbe a pseudo-differential operator whose symbol belongs to the Hörmander class
S
p
,
δ
m
with 0 ≤δ< 1, 0 <ρ≤ 1,δ≤ρand −(n+ 1) <m≤ −(n+ 1)(1 −ρ). In present paper, we prove that ifbis a locally integrable function satisfying
sup
balls
B
⊂
ℝ
n
log
(
e
+
1
/
|
B
|
)
(
1
+
|
B
|
)
θ
1
|
B
|
∫
B
|
f
(
x
)
−
1
|
B
|
∫
B
f
(
y
)
d
y
|
d
x
<
∞
for someθ∈ [0, ∞), then the commutator [b,T] is bounded on the local Hardy spaceh
1(ℝ
n
) introduced by Goldberg [9].
As a consequence, whenρ= 1 andm= 0, we obtain an improvement of a recent result by Yang, Wang and Chen [21].
2010Mathematics Subject Classification: 47G30, 42B35.
Key words and phrases: Pseudo-differential operators, Hardy spaces, BMO spaces, LMO spaces, Commutators. |
---|---|
ISSN: | 1027-5487 2224-6851 |
DOI: | 10.11650/tjm.19.2015.5003 |