Acceleration of wound healing by composite small intestinal submucosa hydrogels through immunomodulation

Small intestinal submucosa (SIS) hydrogel is a potential candidate for wound dressing since its excellent biocompatibility and bioactivities. However, the intrinsic lack of sufficient immunomodulatory activities has limited its application. Herein, tannic acid (TA) and interleukin-10 (IL-10) were su...

Full description

Saved in:
Bibliographic Details
Published inComposites. Part B, Engineering Vol. 254; p. 110550
Main Authors Zhang, Qing-Yi, Tan, Jie, Nie, Rong, Song, Yu-Ting, Zhou, Xing-Li, Feng, Zi-Yuan, Huang, Kai, Zou, Chen-Yu, Yuan, Qi-Juan, Zhao, Long-Mei, Zhang, Xiu-Zhen, Jiang, Yan-Lin, Liu, Li-Min, Li-Ling, Jesse, Xie, Hui-Qi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2023
Subjects
Online AccessGet full text
ISSN1359-8368
1879-1069
DOI10.1016/j.compositesb.2023.110550

Cover

Abstract Small intestinal submucosa (SIS) hydrogel is a potential candidate for wound dressing since its excellent biocompatibility and bioactivities. However, the intrinsic lack of sufficient immunomodulatory activities has limited its application. Herein, tannic acid (TA) and interleukin-10 (IL-10) were supplemented to the SIS hydrogel to fabricate a novel composite hydrogel to confer an immunomodulatory activity. In addition to the improvement in swelling and anti-degradation properties, the composite SIS hydrogel has attained satisfying free radical scavenging and sustained IL-10 release. Meanwhile, the hydrogel possessed excellent anti-oxidative and immunomodulatory abilities to promote the polarization of M2c macrophages, thereby regulating collagen synthesis and providing a favorable immune environment for angiogenesis and extracellular matrix remodeling. Above results have therefore provided a facile but effective strategy to improve the therapeutic effects of the SIS hydrogel and expand its scope of clinical applications. The composite SIS hydrogel possessed excellent anti-oxidative and immunomodulatory capacities to promote the polarization of M2c macrophages, thereby regulate collagen synthesis and provide a favorable immune environment for angiogenesis and extracellular matrix remodeling. Through these functions, the composite SIS hydrogel could effectively facilitate wound healing and attenuate scar hyperplasia. [Display omitted]
AbstractList Small intestinal submucosa (SIS) hydrogel is a potential candidate for wound dressing since its excellent biocompatibility and bioactivities. However, the intrinsic lack of sufficient immunomodulatory activities has limited its application. Herein, tannic acid (TA) and interleukin-10 (IL-10) were supplemented to the SIS hydrogel to fabricate a novel composite hydrogel to confer an immunomodulatory activity. In addition to the improvement in swelling and anti-degradation properties, the composite SIS hydrogel has attained satisfying free radical scavenging and sustained IL-10 release. Meanwhile, the hydrogel possessed excellent anti-oxidative and immunomodulatory abilities to promote the polarization of M2c macrophages, thereby regulating collagen synthesis and providing a favorable immune environment for angiogenesis and extracellular matrix remodeling. Above results have therefore provided a facile but effective strategy to improve the therapeutic effects of the SIS hydrogel and expand its scope of clinical applications. The composite SIS hydrogel possessed excellent anti-oxidative and immunomodulatory capacities to promote the polarization of M2c macrophages, thereby regulate collagen synthesis and provide a favorable immune environment for angiogenesis and extracellular matrix remodeling. Through these functions, the composite SIS hydrogel could effectively facilitate wound healing and attenuate scar hyperplasia. [Display omitted]
ArticleNumber 110550
Author Jiang, Yan-Lin
Xie, Hui-Qi
Zhang, Xiu-Zhen
Zhang, Qing-Yi
Zhao, Long-Mei
Yuan, Qi-Juan
Li-Ling, Jesse
Zhou, Xing-Li
Zou, Chen-Yu
Song, Yu-Ting
Nie, Rong
Feng, Zi-Yuan
Liu, Li-Min
Tan, Jie
Huang, Kai
Author_xml – sequence: 1
  givenname: Qing-Yi
  surname: Zhang
  fullname: Zhang, Qing-Yi
  organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
– sequence: 2
  givenname: Jie
  surname: Tan
  fullname: Tan, Jie
  organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
– sequence: 3
  givenname: Rong
  surname: Nie
  fullname: Nie, Rong
  organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
– sequence: 4
  givenname: Yu-Ting
  surname: Song
  fullname: Song, Yu-Ting
  organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
– sequence: 5
  givenname: Xing-Li
  surname: Zhou
  fullname: Zhou, Xing-Li
  organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
– sequence: 6
  givenname: Zi-Yuan
  surname: Feng
  fullname: Feng, Zi-Yuan
  organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
– sequence: 7
  givenname: Kai
  surname: Huang
  fullname: Huang, Kai
  organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
– sequence: 8
  givenname: Chen-Yu
  surname: Zou
  fullname: Zou, Chen-Yu
  organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
– sequence: 9
  givenname: Qi-Juan
  surname: Yuan
  fullname: Yuan, Qi-Juan
  organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
– sequence: 10
  givenname: Long-Mei
  surname: Zhao
  fullname: Zhao, Long-Mei
  organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
– sequence: 11
  givenname: Xiu-Zhen
  surname: Zhang
  fullname: Zhang, Xiu-Zhen
  organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
– sequence: 12
  givenname: Yan-Lin
  surname: Jiang
  fullname: Jiang, Yan-Lin
  organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
– sequence: 13
  givenname: Li-Min
  surname: Liu
  fullname: Liu, Li-Min
  organization: Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
– sequence: 14
  givenname: Jesse
  surname: Li-Ling
  fullname: Li-Ling, Jesse
  organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
– sequence: 15
  givenname: Hui-Qi
  orcidid: 0000-0003-0760-0853
  surname: Xie
  fullname: Xie, Hui-Qi
  email: xiehuiqi@scu.edu.cn
  organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
BookMark eNqNkMtOwzAQRS1UJFrgH8wHpNhJ7NgrVFW8pEpsYG05zqRx5diVnYD69_SBEGLV1Z3NPXN1ZmjigweE7iiZU0L5_WZuQr8NyQ6Q6nlO8mJOKWGMXKApFZXMKOFysr8LJjNRcHGFZiltCCElK_Ip6hbGgIOoBxs8Di3-CqNvcAfaWb_G9Q7_8nHqtXPY-v2rwXrtcBrrfjQhadztmhjW4BIeuhjGdYdt348-9KEZ3ZF9gy5b7RLc_uQ1-nh6fF--ZKu359flYpWZIqdDVhZCmNbUoiqppCWrGWcaoBa6KguZM6KJNLoUFW8EbYDJSnNNaMtlznkNVXGNHk5cE0NKEVpl7HBcMERtnaJEHcSpjfojTh3EqZO4PUH-I2yj7XXcndVdnrp7FfBpIapkLHgDjY1gBtUEewblGyv5lcE
CitedBy_id crossref_primary_10_1016_j_cej_2023_147985
crossref_primary_10_1016_j_matdes_2024_112902
crossref_primary_10_1016_j_cej_2024_150756
crossref_primary_10_1039_D4TB00772G
crossref_primary_10_1016_j_compositesb_2024_111975
crossref_primary_10_1016_j_compositesb_2023_110985
crossref_primary_10_1016_j_compositesb_2023_110701
crossref_primary_10_1016_j_cej_2024_158387
crossref_primary_10_1016_j_ijbiomac_2024_137633
crossref_primary_10_1080_00914037_2023_2235875
crossref_primary_10_1016_j_mtbio_2024_101032
crossref_primary_10_1016_j_compositesb_2024_111223
crossref_primary_10_1039_D3TB02335D
crossref_primary_10_1039_D3TB02214E
crossref_primary_10_1016_j_jconrel_2024_03_054
crossref_primary_10_1016_j_apmt_2024_102293
crossref_primary_10_1002_adfm_202315382
crossref_primary_10_1016_j_compositesb_2023_111005
crossref_primary_10_1016_j_ijbiomac_2024_131643
crossref_primary_10_1186_s13287_024_03976_x
crossref_primary_10_1016_j_cej_2024_154333
crossref_primary_10_1016_j_cej_2024_154993
crossref_primary_10_1016_j_compositesb_2024_111278
crossref_primary_10_1016_j_jot_2024_07_006
crossref_primary_10_1016_j_eurpolymj_2023_112372
Cites_doi 10.1039/D0BM02058C
10.1016/j.molmed.2020.07.008
10.1016/j.addr.2018.03.012
10.1016/j.biomaterials.2021.121038
10.1186/s13287-019-1383-x
10.1016/j.cclet.2021.09.105
10.3389/fphys.2019.01101
10.1089/wound.2021.0026
10.1039/D2TB00735E
10.1016/j.compositesb.2022.110311
10.1016/j.compositesb.2021.109524
10.1039/D2TB01355J
10.1016/j.bioactmat.2020.05.004
10.1089/wound.2014.0561
10.1016/j.actbio.2016.07.003
10.1111/wrr.12398
10.1016/j.biomaterials.2019.02.017
10.1007/s10456-013-9381-6
10.1111/jcmm.16250
10.1002/star.201200259
10.1021/acs.chemrev.0c00895
10.1038/s41467-021-23482-5
10.1039/C9TB00530G
10.1038/nprot.2013.002
10.1039/D1TB02073K
10.1039/C9TB01682A
10.1016/j.redox.2019.101284
10.1016/j.stem.2020.07.008
10.7150/thno.29766
10.1016/j.actbio.2019.01.019
10.1016/j.matbio.2015.03.002
10.1016/j.compositesb.2021.109557
10.1016/j.imbio.2017.02.006
10.1039/D0BM01747G
10.1016/j.biomaterials.2021.121037
10.1002/jbm.a.37105
10.1039/C8TB02138D
10.1021/acsami.6b04711
10.1002/admi.202000632
10.1016/j.compositesb.2022.109746
10.1039/D1TB00383F
10.1016/j.addr.2018.05.010
10.1089/wound.2012.0383
10.1096/fj.201600856R
10.1016/j.biomaterials.2016.01.002
10.1038/s41577-019-0127-6
10.1089/wound.2011.0307
10.1089/wound.2012.0407
10.1016/j.carbpol.2023.120546
10.1016/j.compositesb.2022.110313
10.1089/wound.2017.0743
10.1097/QCO.0000000000000550
10.1016/j.bioactmat.2021.02.033
10.1039/D1TB00156F
10.1016/j.actbio.2019.03.052
10.1039/D2MH00115B
10.1016/j.bioactmat.2021.09.022
10.1002/adhm.201901502
10.1039/D1BM00470K
10.1084/jem.20190418
10.1007/s00395-017-0622-5
10.1039/D0TB01534B
10.1016/j.bioactmat.2021.02.022
10.1089/ten.teb.2018.0350
10.1016/j.compositesb.2022.110149
10.1016/j.biomaterials.2015.08.050
10.3390/ijms18081698
10.1016/j.trsl.2021.05.006
10.1002/bit.27854
10.4049/jimmunol.0903356
10.1039/C7BM00286F
10.1039/D0BM01928C
10.3390/ijms22020950
10.1016/j.actbio.2015.10.013
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compositesb.2023.110550
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1069
ExternalDocumentID 10_1016_j_compositesb_2023_110550
S1359836823000537
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
ZMT
~02
~G-
29F
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
RIG
SSH
VH1
ID FETCH-LOGICAL-c321t-4388cfcb87419145b565aeeb8a7439250a09ca4876d81de597a6a01f69266be73
IEDL.DBID AIKHN
ISSN 1359-8368
IngestDate Tue Jul 01 02:03:18 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Fri Feb 23 02:39:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tannic acid
Skin defect
Interleukin-10
Small intestinal submucosa
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-4388cfcb87419145b565aeeb8a7439250a09ca4876d81de597a6a01f69266be73
ORCID 0000-0003-0760-0853
ParticipantIDs crossref_citationtrail_10_1016_j_compositesb_2023_110550
crossref_primary_10_1016_j_compositesb_2023_110550
elsevier_sciencedirect_doi_10_1016_j_compositesb_2023_110550
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Composites. Part B, Engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hu, Tseng, Chiou, Lan, Chou (bib20) 2019; 10
McArdle, Abbah, Bhowmick, Collin, Pandit (bib63) 2021; 9
Jetten, Verbruggen, Gijbels, Post, De Winther (bib71) 2014; 17
Koo, Hee Hong, Hee Lee, Kwon, Mi Seon (bib56) 2019; 95
DeNardo, Ruffell (bib69) 2019; 19
Liu, Chen, Luo, Zhao, Zhou (bib47) 2021; 276
Pugliese, Coentro, Raghunath, Zeugolis (bib5) 2018; 129
Balaji, Wang, King, Le, Bhattacharya (bib60) 2017; 31
Wang, Wei, Wang, Qian, Liu (bib44) 2022; 247
Chen, Wang, Ma, Huang, Jing (bib72) 2022; 10
Wilgus, Roy, McDaniel (bib74) 2013; 2
Wang, Qi, Luo, Xu, Wang (bib13) 2022; 13
Priya, Gupta, Jain, Sarkar, Damania (bib38) 2016; 8
Cascone, Lamberti (bib8) 2020; 573
Fife, Eckert, Carter (bib4) 2018; 7
Yu, Zhang, Liu, Wang, Shen (bib48) 2022; 230
Shi, Kong, Su, Kuss, Jiang (bib26) 2021; 9
Sindrilaru, Scharffetter-Kochanek (bib62) 2013; 2
Park, Lee, Jeon, Lee, Hwang (bib58) 2019; 90
Wang, Hu, Zhou, Xiong, Zhang (bib76) 2017; 7
Qiao, Xie, Fang, Shen, Li (bib46) 2021; 276
Atcha, Jairaman, Holt, Meli, Nagalla (bib16) 2021; 12
Rohani, Parks (bib75) 2015; 44–46
Feng, Sun, Liu, Wu, Zhao (bib77) 2019; 10
Jeong, Yang, Roh, Kim, Lee (bib73) 2017; 18
Sathishkumar, Gopinath, Zhang, Kang, Xu (bib24) 2022; 10
Lucas, Waisman, Ranjan, Roes, Krieg (bib14) 2010; 184
Wang, Chu, Zhao, Yang, Hu (bib17) 2022; 11
Zhang, Xiao, Wang, Fan, Li (bib18) 2019; 7
Tracy, Minasian, Caterson (bib52) 2016; 5
Mascharak, desJardins-Park, Longaker (bib55) 2020; 26
Jung, Ma, Iyer, DeLeon-Pennell, Yabluchanskiy (bib31) 2017; 112
Nour, Imani, Chaudhry, Sharifi (bib66) 2021; 109
Rahman, Wang, Li, Xu, Wang (bib32) 2022; 2022
Lurier, Dalton, Dampier, Raman, Nassiri (bib51) 2017; 222
Chen, Zhang, Zhang, Sun, Liu (bib50) 2021; 6
Shi, Shi, Xie, Zhao, Li (bib61) 2021; 25
Monavarian, Kader, Moeinzadeh, Jabbari (bib53) 2019; 25
Gu, Zhang, Geng, Wang, Yang (bib67) 2021; 6
Saraiva, Vieira, O’Garra (bib29) 2020; 217
Wang, Zhang, Chao, Qin, Ding (bib10) 2016; 29
Klopfleisch (bib30) 2016; 43
Torres, Commeaux, Troncoso (bib43) 2013; 65
Chen, Lee, Park, Kim, Chu (bib59) 2015; 72
Zhang, Tan, Huang, Nie, Feng (bib78) 2023; 305
Wang, Wang, Xu, Zhang, Lin (bib21) 2019; 9
Zhang, Fu, Yang, Liu, Li (bib35) 2020; 7
Abbasi, Sinha, Labit, Rosin, Yoon (bib54) 2020; 27
Louiselle, Niemiec, Zgheib, Liechty (bib45) 2021; 236
Cao, Huang, Li, Fan, Xie (bib11) 2019; 7
Sapudom, Wu, Chkolnikov, Ansorge, Anderegg (bib57) 2017; 5
Zhang, Wang, Cueto, Effi, Zhang (bib41) 2019; 26
DiPietro, Wilgus, Koh (bib15) 2021; 22
Tan, Zhang, Song, Huang, Jiang (bib33) 2022; 243
Whitaker, Hernaez-Estrada, Hernandez, Santos-Vizcaino, Spiller (bib70) 2021; 121
Liao, Xu, Zhang, Fan, Xie (bib12) 2020; 8
Chen, Zhang, Zhou, Liu, Zhao (bib19) 2020; 5
Ferrante, Leibovich (bib23) 2012; 1
Guo, Xie, Lu, Guo, Xu (bib37) 2021; 9
Hosseini, Abdouss, Mazinani, Soltanabadi, Kalaee (bib64) 2022; 231
Wang, Xu, Zhao, Liu, Wu (bib9) 2021; 9
Anders, Lawton, Ammons (bib49) 2019; 32
Sen (bib2) 2021; 10
Zhang, Qin, Zhou, Nie, Wang (bib68) 2018; 6
Zeng, Zhu, Chen, Zhang, Lu (bib1) 2022
Zhang, Huang, Tan, Lei, Huang (bib42) 2022; 33
Lichtman, Otero-Vinas, Falanga (bib40) 2016; 24
Castaño, Pérez-Amodio, Navarro-Requena, Mateos-Timoneda, Engel (bib6) 2018; 129
Zhang, Pei, Yang, Guo, Yang (bib27) 2022; 10
Geng, Zhang, Gu, Yang, Du (bib65) 2021; 9
Cao, Xu, Li, Zhang, Yang (bib25) 2022; 234
Cheng, Sun, Zhao, Wang, Yu (bib22) 2016; 83
Xu, Han, Gu, Wu (bib28) 2020; 9
Wang, Ge, Tredget, Wu (bib34) 2013; 8
Zhang, Wang, Han, Jin, Xu (bib3) 2021; 118
Shamskhou, Kratochvil, Orcholski, Nagy, Kaber (bib36) 2019; 203
Ali Zahid, Chakraborty, Shamiya, Ravi, Paul (bib7) 2022; 9
Tan, Zhang, Huang, Huang, Xie (bib39) 2021; 9
Chen (10.1016/j.compositesb.2023.110550_bib50) 2021; 6
Ferrante (10.1016/j.compositesb.2023.110550_bib23) 2012; 1
Sapudom (10.1016/j.compositesb.2023.110550_bib57) 2017; 5
Shamskhou (10.1016/j.compositesb.2023.110550_bib36) 2019; 203
Anders (10.1016/j.compositesb.2023.110550_bib49) 2019; 32
Geng (10.1016/j.compositesb.2023.110550_bib65) 2021; 9
Balaji (10.1016/j.compositesb.2023.110550_bib60) 2017; 31
Cascone (10.1016/j.compositesb.2023.110550_bib8) 2020; 573
Lurier (10.1016/j.compositesb.2023.110550_bib51) 2017; 222
Priya (10.1016/j.compositesb.2023.110550_bib38) 2016; 8
Klopfleisch (10.1016/j.compositesb.2023.110550_bib30) 2016; 43
Zhang (10.1016/j.compositesb.2023.110550_bib3) 2021; 118
Wang (10.1016/j.compositesb.2023.110550_bib9) 2021; 9
Chen (10.1016/j.compositesb.2023.110550_bib59) 2015; 72
Lucas (10.1016/j.compositesb.2023.110550_bib14) 2010; 184
Liu (10.1016/j.compositesb.2023.110550_bib47) 2021; 276
Sathishkumar (10.1016/j.compositesb.2023.110550_bib24) 2022; 10
Zhang (10.1016/j.compositesb.2023.110550_bib41) 2019; 26
Wang (10.1016/j.compositesb.2023.110550_bib34) 2013; 8
Jetten (10.1016/j.compositesb.2023.110550_bib71) 2014; 17
Rahman (10.1016/j.compositesb.2023.110550_bib32) 2022; 2022
Park (10.1016/j.compositesb.2023.110550_bib58) 2019; 90
Zhang (10.1016/j.compositesb.2023.110550_bib42) 2022; 33
Sindrilaru (10.1016/j.compositesb.2023.110550_bib62) 2013; 2
Wang (10.1016/j.compositesb.2023.110550_bib76) 2017; 7
Wang (10.1016/j.compositesb.2023.110550_bib10) 2016; 29
Wang (10.1016/j.compositesb.2023.110550_bib17) 2022; 11
Xu (10.1016/j.compositesb.2023.110550_bib28) 2020; 9
Sen (10.1016/j.compositesb.2023.110550_bib2) 2021; 10
Mascharak (10.1016/j.compositesb.2023.110550_bib55) 2020; 26
Whitaker (10.1016/j.compositesb.2023.110550_bib70) 2021; 121
Cao (10.1016/j.compositesb.2023.110550_bib25) 2022; 234
Cao (10.1016/j.compositesb.2023.110550_bib11) 2019; 7
Louiselle (10.1016/j.compositesb.2023.110550_bib45) 2021; 236
Wilgus (10.1016/j.compositesb.2023.110550_bib74) 2013; 2
Shi (10.1016/j.compositesb.2023.110550_bib61) 2021; 25
Wang (10.1016/j.compositesb.2023.110550_bib44) 2022; 247
Fife (10.1016/j.compositesb.2023.110550_bib4) 2018; 7
Chen (10.1016/j.compositesb.2023.110550_bib19) 2020; 5
Wang (10.1016/j.compositesb.2023.110550_bib21) 2019; 9
Castaño (10.1016/j.compositesb.2023.110550_bib6) 2018; 129
Zhang (10.1016/j.compositesb.2023.110550_bib78) 2023; 305
Ali Zahid (10.1016/j.compositesb.2023.110550_bib7) 2022; 9
Wang (10.1016/j.compositesb.2023.110550_bib13) 2022; 13
Zhang (10.1016/j.compositesb.2023.110550_bib18) 2019; 7
Nour (10.1016/j.compositesb.2023.110550_bib66) 2021; 109
Zhang (10.1016/j.compositesb.2023.110550_bib68) 2018; 6
DiPietro (10.1016/j.compositesb.2023.110550_bib15) 2021; 22
Atcha (10.1016/j.compositesb.2023.110550_bib16) 2021; 12
Lichtman (10.1016/j.compositesb.2023.110550_bib40) 2016; 24
Monavarian (10.1016/j.compositesb.2023.110550_bib53) 2019; 25
Chen (10.1016/j.compositesb.2023.110550_bib72) 2022; 10
Rohani (10.1016/j.compositesb.2023.110550_bib75) 2015; 44–46
McArdle (10.1016/j.compositesb.2023.110550_bib63) 2021; 9
Torres (10.1016/j.compositesb.2023.110550_bib43) 2013; 65
Cheng (10.1016/j.compositesb.2023.110550_bib22) 2016; 83
Tan (10.1016/j.compositesb.2023.110550_bib39) 2021; 9
Tracy (10.1016/j.compositesb.2023.110550_bib52) 2016; 5
Feng (10.1016/j.compositesb.2023.110550_bib77) 2019; 10
Zhang (10.1016/j.compositesb.2023.110550_bib27) 2022; 10
Guo (10.1016/j.compositesb.2023.110550_bib37) 2021; 9
Pugliese (10.1016/j.compositesb.2023.110550_bib5) 2018; 129
Hosseini (10.1016/j.compositesb.2023.110550_bib64) 2022; 231
Jung (10.1016/j.compositesb.2023.110550_bib31) 2017; 112
Liao (10.1016/j.compositesb.2023.110550_bib12) 2020; 8
Zeng (10.1016/j.compositesb.2023.110550_bib1) 2022
Zhang (10.1016/j.compositesb.2023.110550_bib35) 2020; 7
Abbasi (10.1016/j.compositesb.2023.110550_bib54) 2020; 27
Saraiva (10.1016/j.compositesb.2023.110550_bib29) 2020; 217
Hu (10.1016/j.compositesb.2023.110550_bib20) 2019; 10
Gu (10.1016/j.compositesb.2023.110550_bib67) 2021; 6
Koo (10.1016/j.compositesb.2023.110550_bib56) 2019; 95
DeNardo (10.1016/j.compositesb.2023.110550_bib69) 2019; 19
Shi (10.1016/j.compositesb.2023.110550_bib26) 2021; 9
Qiao (10.1016/j.compositesb.2023.110550_bib46) 2021; 276
Tan (10.1016/j.compositesb.2023.110550_bib33) 2022; 243
Yu (10.1016/j.compositesb.2023.110550_bib48) 2022; 230
Jeong (10.1016/j.compositesb.2023.110550_bib73) 2017; 18
References_xml – volume: 9
  start-page: 1530
  year: 2021
  end-page: 1546
  ident: bib9
  article-title: Advances of hydrogel dressings in diabetic wounds
  publication-title: Biomater Sci
– volume: 276
  year: 2021
  ident: bib46
  article-title: Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration
  publication-title: Biomaterials
– volume: 247
  year: 2022
  ident: bib44
  article-title: Quercetin-based composite hydrogel promotes muscle tissue regeneration through macrophage polarization and oxidative stress attenuation
  publication-title: Compos B Eng
– volume: 109
  start-page: 453
  year: 2021
  end-page: 478
  ident: bib66
  article-title: Skin wound healing assisted by angiogenic targeted tissue engineering: a comprehensive review of bioengineered approaches
  publication-title: J Biomed Mater Res
– volume: 43
  start-page: 3
  year: 2016
  end-page: 13
  ident: bib30
  article-title: Macrophage reaction against biomaterials in the mouse model - phenotypes, functions and markers
  publication-title: Acta Biomater
– volume: 7
  year: 2020
  ident: bib35
  article-title: ROS scavenging biopolymers for anti-inflammatory diseases: classification and formulation
  publication-title: Adv Mater Interfac
– volume: 8
  start-page: 15145
  year: 2016
  end-page: 15159
  ident: bib38
  article-title: Bilayer cryogel wound dressing and skin regeneration grafts for the treatment of acute skin wounds
  publication-title: ACS Appl Mater Interfaces
– volume: 27
  start-page: 396
  year: 2020
  end-page: 412.e6
  ident: bib54
  article-title: Distinct regulatory programs control the latent regenerative potential of dermal fibroblasts during wound healing
  publication-title: Cell Stem Cell
– volume: 7
  start-page: 77
  year: 2018
  end-page: 94
  ident: bib4
  article-title: Publicly reported wound healing rates: the fantasy and the reality
  publication-title: Adv Wound Care
– volume: 9
  start-page: 1850
  year: 2022
  end-page: 1865
  ident: bib7
  article-title: Leveraging the advancements in functional biomaterials and scaffold fabrication technologies for chronic wound healing applications
  publication-title: Mater Horiz
– volume: 33
  start-page: 1623
  year: 2022
  end-page: 1626
  ident: bib42
  article-title: Metal-phenolic networks modified polyurethane as periosteum for bone regeneration
  publication-title: Chin Chem Lett
– volume: 6
  start-page: 3254
  year: 2021
  end-page: 3268
  ident: bib67
  article-title: Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue
  publication-title: Bioact Mater
– volume: 18
  start-page: 1698
  year: 2017
  ident: bib73
  article-title: Scar prevention and enhanced wound healing induced by polydeoxyribonucleotide in a rat incisional wound-healing model
  publication-title: Int J Mol Sci
– volume: 32
  start-page: 204
  year: 2019
  end-page: 209
  ident: bib49
  article-title: Metabolic immunomodulation of macrophage functional plasticity in nonhealing wounds
  publication-title: Curr Opin Infect Dis
– volume: 2
  start-page: 357
  year: 2013
  end-page: 368
  ident: bib62
  article-title: Disclosure of the culprits: macrophages-versatile regulators of wound healing
  publication-title: Adv Wound Care
– volume: 222
  start-page: 847
  year: 2017
  end-page: 856
  ident: bib51
  article-title: Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing
  publication-title: Immunobiology
– volume: 5
  start-page: 1858
  year: 2017
  end-page: 1867
  ident: bib57
  article-title: Fibroblast fate regulation by time dependent TGF-β1 and IL-10 stimulation in biomimetic 3D matrices
  publication-title: Biomater Sci
– volume: 29
  start-page: 135
  year: 2016
  end-page: 148
  ident: bib10
  article-title: Preparation and characterization of pro-angiogenic gel derived from small intestinal submucosa
  publication-title: Acta Biomater
– volume: 5
  start-page: 880
  year: 2020
  end-page: 890
  ident: bib19
  article-title: Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-κB signaling pathway
  publication-title: Bioact Mater
– volume: 573
  year: 2020
  ident: bib8
  article-title: Hydrogel-based commercial products for biomedical applications: a review
  publication-title: Int J Pharm (Amst)
– volume: 6
  start-page: 6731
  year: 2018
  end-page: 6743
  ident: bib68
  article-title: Porous nanofibrous scaffold incorporated with S1P loaded mesoporous silica nanoparticles and BMP-2 encapsulated PLGA microspheres for enhancing angiogenesis and osteogenesis
  publication-title: J Mater Chem B
– volume: 7
  year: 2017
  ident: bib76
  article-title: Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling
  publication-title: Sci Rep
– volume: 6
  start-page: 3218
  year: 2021
  end-page: 3230
  ident: bib50
  article-title: Programmable immune activating electrospun fibers for skin regeneration
  publication-title: Bioact Mater
– volume: 112
  start-page: 33
  year: 2017
  ident: bib31
  article-title: IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation
  publication-title: Basic Res Cardiol
– volume: 13
  year: 2022
  ident: bib13
  article-title: Inflammatory microenvironment of skin wounds
  publication-title: Front Immunol
– volume: 231
  year: 2022
  ident: bib64
  article-title: Modified nanofiber containing chitosan and graphene oxide-magnetite nanoparticles as effective materials for smart wound dressing
  publication-title: Compos B Eng
– volume: 25
  start-page: 1554
  year: 2021
  end-page: 1567
  ident: bib61
  article-title: IL-10 alleviates lipopolysaccharide-induced skin scarring via IL-10R/STAT3 axis regulating TLR4/NF-κB pathway in dermal fibroblasts
  publication-title: J Cell Mol Med
– volume: 121
  start-page: 11305
  year: 2021
  end-page: 11335
  ident: bib70
  article-title: Immunomodulatory biomaterials for tissue repair
  publication-title: Chem Rev
– volume: 276
  year: 2021
  ident: bib47
  article-title: Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration
  publication-title: Biomaterials
– volume: 83
  start-page: 169
  year: 2016
  end-page: 181
  ident: bib22
  article-title: Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars
  publication-title: Biomaterials
– volume: 10
  start-page: 1101
  year: 2019
  ident: bib77
  article-title: Direct and indirect roles of macrophages in hypertrophic scar formation
  publication-title: Front Physiol
– volume: 9
  start-page: 2631
  year: 2021
  end-page: 2646
  ident: bib65
  article-title: Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration
  publication-title: Biomater Sci
– year: 2022
  ident: bib1
  article-title: Design the molecule structures to achieve functional advantages of hydrogel wound dressings: advances and strategies
  publication-title: Compos B Eng
– volume: 65
  start-page: 543
  year: 2013
  end-page: 551
  ident: bib43
  article-title: Starch-based biomaterials for wound-dressing applications
  publication-title: Starch Staerke
– volume: 7
  start-page: 5038
  year: 2019
  end-page: 5055
  ident: bib11
  article-title: Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair
  publication-title: J Mater Chem B
– volume: 90
  start-page: 179
  year: 2019
  end-page: 191
  ident: bib58
  article-title: Coacervate-mediated exogenous growth factor delivery for scarless skin regeneration
  publication-title: Acta Biomater
– volume: 7
  start-page: 7090
  year: 2019
  end-page: 7109
  ident: bib18
  article-title: Topographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies
  publication-title: J Mater Chem B
– volume: 8
  start-page: 10023
  year: 2020
  end-page: 10049
  ident: bib12
  article-title: Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives
  publication-title: J Mater Chem B
– volume: 12
  start-page: 3256
  year: 2021
  ident: bib16
  article-title: Mechanically activated ion channel Piezo 1 modulates macrophage polarization and stiffness sensing
  publication-title: Nat Commun
– volume: 129
  start-page: 95
  year: 2018
  end-page: 117
  ident: bib6
  article-title: Instructive microenvironments in skin wound healing: biomaterials as signal releasing platforms
  publication-title: Adv Drug Deliv Rev
– volume: 95
  start-page: 418
  year: 2019
  end-page: 426
  ident: bib56
  article-title: Effective stacking and transplantation of stem cell sheets using exogenous ROS-producing film for accelerated wound healing
  publication-title: Acta Biomater
– volume: 129
  start-page: 1
  year: 2018
  end-page: 3
  ident: bib5
  article-title: Wound healing and scar wars
  publication-title: Adv Drug Deliv Rev
– volume: 25
  start-page: 294
  year: 2019
  end-page: 311
  ident: bib53
  article-title: Regenerative scar-free skin wound healing
  publication-title: Tissue Eng B Rev
– volume: 2
  start-page: 379
  year: 2013
  end-page: 388
  ident: bib74
  article-title: Neutrophils and wound repair: positive actions and negative reactions
  publication-title: Adv Wound Care
– volume: 11
  start-page: 206
  year: 2022
  end-page: 217
  ident: bib17
  article-title: The diameter factor of aligned membranes facilitates wound healing by promoting epithelialization in an immune way
  publication-title: Bioact Mater
– volume: 5
  start-page: 119
  year: 2016
  end-page: 136
  ident: bib52
  article-title: Extracellular matrix and dermal fibroblast function in the healing wound
  publication-title: Adv Wound Care
– volume: 9
  start-page: 7182
  year: 2021
  end-page: 7195
  ident: bib26
  article-title: Tannic acid-inspired, self-healing, and dual stimuli responsive dynamic hydrogel with potent antibacterial and anti-oxidative properties
  publication-title: J Mater Chem B
– volume: 10
  start-page: 281
  year: 2021
  end-page: 292
  ident: bib2
  article-title: Human wound and its burden: updated 2020 compendium of estimates
  publication-title: Adv Wound Care
– volume: 10
  start-page: 275
  year: 2019
  ident: bib20
  article-title: Bone marrow concentrate-induced mesenchymal stem cell conditioned medium facilitates wound healing and prevents hypertrophic scar formation in a rabbit ear model
  publication-title: Stem Cell Res Ther
– volume: 243
  year: 2022
  ident: bib33
  article-title: Accelerated bone defect regeneration through sequential activation of the M1 and M2 phenotypes of macrophages by a composite BMP-2@SIS hydrogel: an immunomodulatory perspective
  publication-title: Compos B Eng
– volume: 26
  year: 2019
  ident: bib41
  article-title: Biochemical basis and metabolic interplay of redox regulation
  publication-title: Redox Biol
– volume: 9
  year: 2020
  ident: bib28
  article-title: Advances and impact of antioxidant hydrogel in chronic wound healing
  publication-title: Adv. Health Mater.
– volume: 10
  start-page: 6279
  year: 2022
  end-page: 6286
  ident: bib72
  article-title: Mechanically active small intestinal submucosa hydrogel for accelerating chronic wound healing
  publication-title: J Mater Chem B
– volume: 72
  start-page: 138
  year: 2015
  end-page: 151
  ident: bib59
  article-title: Controlled dual delivery of fibroblast growth factor-2 and Interleukin-10 by heparin-based coacervate synergistically enhances ischemic heart repair
  publication-title: Biomaterials
– volume: 184
  start-page: 3964
  year: 2010
  end-page: 3977
  ident: bib14
  article-title: Differential roles of macrophages in diverse phases of skin repair
  publication-title: J Immunol
– volume: 203
  start-page: 52
  year: 2019
  end-page: 62
  ident: bib36
  article-title: Hydrogel-based delivery of IL-10 improves treatment of bleomycin-induced lung fibrosis in mice
  publication-title: Biomaterials
– volume: 19
  start-page: 369
  year: 2019
  end-page: 382
  ident: bib69
  article-title: Macrophages as regulators of tumour immunity and immunotherapy
  publication-title: Nat Rev Immunol
– volume: 31
  start-page: 868
  year: 2017
  end-page: 881
  ident: bib60
  article-title: Interleukin-10-mediated regenerative postnatal tissue repair is dependent on regulation of hyaluronan metabolism via fibroblast-specific STAT3 signaling
  publication-title: Faseb J
– volume: 9
  start-page: 65
  year: 2019
  end-page: 76
  ident: bib21
  article-title: Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration
  publication-title: Theranostics
– volume: 2022
  year: 2022
  ident: bib32
  article-title: Single-cell RNA sequencing reveals the interaction of injected ADSCs with lung-originated cells in mouse pulmonary fibrosis
  publication-title: Stem Cell Int
– volume: 10
  start-page: 2296
  year: 2022
  end-page: 2315
  ident: bib24
  article-title: Recent progress in tannic acid-driven antibacterial/antifouling surface coating strategies
  publication-title: J Mater Chem B
– volume: 10
  start-page: 5439
  year: 2022
  end-page: 5453
  ident: bib27
  article-title: Vascularized nanocomposite hydrogel mechanically reinforced by polyelectrolyte-modified nanoparticles
  publication-title: J Mater Chem B
– volume: 26
  start-page: 1101
  year: 2020
  end-page: 1106
  ident: bib55
  article-title: Fibroblast heterogeneity in wound healing: hurdles to clinical translation
  publication-title: Trends Mol Med
– volume: 234
  year: 2022
  ident: bib25
  article-title: Double crosslinking chitosan sponge with antibacterial and hemostatic properties for accelerating wound repair
  publication-title: Compos B Eng
– volume: 305
  year: 2023
  ident: bib78
  article-title: Polyphenolic-modified cellulose acetate membrane for bone regeneration through immunomodulation
  publication-title: Carbohyd Polym
– volume: 1
  start-page: 10
  year: 2012
  end-page: 16
  ident: bib23
  article-title: Regulation of macrophage polarization and wound healing
  publication-title: Adv Wound Care
– volume: 236
  start-page: 109
  year: 2021
  end-page: 116
  ident: bib45
  article-title: Macrophage polarization and diabetic wound healing
  publication-title: Transl Res
– volume: 24
  start-page: 215
  year: 2016
  end-page: 222
  ident: bib40
  article-title: Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis
  publication-title: Wound Repair Regen
– volume: 8
  start-page: 302
  year: 2013
  end-page: 309
  ident: bib34
  article-title: The mouse excisional wound splinting model, including applications for stem cell transplantation
  publication-title: Nat Protoc
– volume: 118
  start-page: 3787
  year: 2021
  end-page: 3798
  ident: bib3
  article-title: Mechano-regulation of vascular network formation without branches in 3D bioprinted cell-laden hydrogel constructs
  publication-title: Biotechnol Bioeng
– volume: 22
  start-page: 950
  year: 2021
  ident: bib15
  article-title: Macrophages in healing wounds: paradoxes and paradigms
  publication-title: Int J Mol Sci
– volume: 9
  start-page: 4803
  year: 2021
  end-page: 4820
  ident: bib39
  article-title: Decellularized scaffold and its elicited immune response towards the host: the underlying mechanism and means of immunomodulatory modification
  publication-title: Biomater Sci
– volume: 9
  start-page: 3136
  year: 2021
  end-page: 3149
  ident: bib63
  article-title: Localized temporal co-delivery of interleukin 10 and decorin genes using amediated by collagen-based biphasic scaffold modulates the expression of TGF-β1/β2 in a rabbit ear hypertrophic scarring model
  publication-title: Biomater Sci
– volume: 44–46
  start-page: 113
  year: 2015
  end-page: 121
  ident: bib75
  article-title: Matrix remodeling by MMPs during wound repair
  publication-title: Matrix Biol
– volume: 217
  year: 2020
  ident: bib29
  article-title: Biology and therapeutic potential of interleukin-10
  publication-title: J Exp Med
– volume: 17
  start-page: 109
  year: 2014
  end-page: 118
  ident: bib71
  article-title: Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo
  publication-title: Angiogenesis
– volume: 9
  start-page: 4098
  year: 2021
  end-page: 4110
  ident: bib37
  article-title: Tannic acid-based metal phenolic networks for bio-applications: a review
  publication-title: J Mater Chem B
– volume: 230
  year: 2022
  ident: bib48
  article-title: Extracellular matrix scaffold-immune microenvironment modulates tissue regeneration
  publication-title: Compos B Eng
– volume: 9
  start-page: 2631
  issue: 7
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib65
  article-title: Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration
  publication-title: Biomater Sci
  doi: 10.1039/D0BM02058C
– volume: 26
  start-page: 1101
  issue: 12
  year: 2020
  ident: 10.1016/j.compositesb.2023.110550_bib55
  article-title: Fibroblast heterogeneity in wound healing: hurdles to clinical translation
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2020.07.008
– volume: 129
  start-page: 95
  year: 2018
  ident: 10.1016/j.compositesb.2023.110550_bib6
  article-title: Instructive microenvironments in skin wound healing: biomaterials as signal releasing platforms
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2018.03.012
– volume: 276
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib46
  article-title: Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.121038
– volume: 10
  start-page: 275
  issue: 1
  year: 2019
  ident: 10.1016/j.compositesb.2023.110550_bib20
  article-title: Bone marrow concentrate-induced mesenchymal stem cell conditioned medium facilitates wound healing and prevents hypertrophic scar formation in a rabbit ear model
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-019-1383-x
– volume: 33
  start-page: 1623
  issue: 3
  year: 2022
  ident: 10.1016/j.compositesb.2023.110550_bib42
  article-title: Metal-phenolic networks modified polyurethane as periosteum for bone regeneration
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2021.09.105
– volume: 10
  start-page: 1101
  year: 2019
  ident: 10.1016/j.compositesb.2023.110550_bib77
  article-title: Direct and indirect roles of macrophages in hypertrophic scar formation
  publication-title: Front Physiol
  doi: 10.3389/fphys.2019.01101
– volume: 10
  start-page: 281
  issue: 5
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib2
  article-title: Human wound and its burden: updated 2020 compendium of estimates
  publication-title: Adv Wound Care
  doi: 10.1089/wound.2021.0026
– volume: 13
  year: 2022
  ident: 10.1016/j.compositesb.2023.110550_bib13
  article-title: Inflammatory microenvironment of skin wounds
  publication-title: Front Immunol
– volume: 10
  start-page: 5439
  issue: 28
  year: 2022
  ident: 10.1016/j.compositesb.2023.110550_bib27
  article-title: Vascularized nanocomposite hydrogel mechanically reinforced by polyelectrolyte-modified nanoparticles
  publication-title: J Mater Chem B
  doi: 10.1039/D2TB00735E
– volume: 247
  year: 2022
  ident: 10.1016/j.compositesb.2023.110550_bib44
  article-title: Quercetin-based composite hydrogel promotes muscle tissue regeneration through macrophage polarization and oxidative stress attenuation
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2022.110311
– volume: 230
  year: 2022
  ident: 10.1016/j.compositesb.2023.110550_bib48
  article-title: Extracellular matrix scaffold-immune microenvironment modulates tissue regeneration
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2021.109524
– volume: 10
  start-page: 6279
  issue: 33
  year: 2022
  ident: 10.1016/j.compositesb.2023.110550_bib72
  article-title: Mechanically active small intestinal submucosa hydrogel for accelerating chronic wound healing
  publication-title: J Mater Chem B
  doi: 10.1039/D2TB01355J
– volume: 5
  start-page: 880
  issue: 4
  year: 2020
  ident: 10.1016/j.compositesb.2023.110550_bib19
  article-title: Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-κB signaling pathway
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2020.05.004
– volume: 5
  start-page: 119
  issue: 3
  year: 2016
  ident: 10.1016/j.compositesb.2023.110550_bib52
  article-title: Extracellular matrix and dermal fibroblast function in the healing wound
  publication-title: Adv Wound Care
  doi: 10.1089/wound.2014.0561
– volume: 43
  start-page: 3
  year: 2016
  ident: 10.1016/j.compositesb.2023.110550_bib30
  article-title: Macrophage reaction against biomaterials in the mouse model - phenotypes, functions and markers
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2016.07.003
– volume: 24
  start-page: 215
  issue: 2
  year: 2016
  ident: 10.1016/j.compositesb.2023.110550_bib40
  article-title: Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis
  publication-title: Wound Repair Regen
  doi: 10.1111/wrr.12398
– volume: 203
  start-page: 52
  year: 2019
  ident: 10.1016/j.compositesb.2023.110550_bib36
  article-title: Hydrogel-based delivery of IL-10 improves treatment of bleomycin-induced lung fibrosis in mice
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.02.017
– volume: 17
  start-page: 109
  issue: 1
  year: 2014
  ident: 10.1016/j.compositesb.2023.110550_bib71
  article-title: Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo
  publication-title: Angiogenesis
  doi: 10.1007/s10456-013-9381-6
– volume: 25
  start-page: 1554
  issue: 3
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib61
  article-title: IL-10 alleviates lipopolysaccharide-induced skin scarring via IL-10R/STAT3 axis regulating TLR4/NF-κB pathway in dermal fibroblasts
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.16250
– volume: 65
  start-page: 543
  issue: 7–8
  year: 2013
  ident: 10.1016/j.compositesb.2023.110550_bib43
  article-title: Starch-based biomaterials for wound-dressing applications
  publication-title: Starch Staerke
  doi: 10.1002/star.201200259
– volume: 121
  start-page: 11305
  issue: 18
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib70
  article-title: Immunomodulatory biomaterials for tissue repair
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.0c00895
– volume: 12
  start-page: 3256
  issue: 1
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib16
  article-title: Mechanically activated ion channel Piezo 1 modulates macrophage polarization and stiffness sensing
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-23482-5
– volume: 7
  start-page: 5038
  issue: 33
  year: 2019
  ident: 10.1016/j.compositesb.2023.110550_bib11
  article-title: Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair
  publication-title: J Mater Chem B
  doi: 10.1039/C9TB00530G
– volume: 8
  start-page: 302
  issue: 2
  year: 2013
  ident: 10.1016/j.compositesb.2023.110550_bib34
  article-title: The mouse excisional wound splinting model, including applications for stem cell transplantation
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2013.002
– volume: 10
  start-page: 2296
  issue: 14
  year: 2022
  ident: 10.1016/j.compositesb.2023.110550_bib24
  article-title: Recent progress in tannic acid-driven antibacterial/antifouling surface coating strategies
  publication-title: J Mater Chem B
  doi: 10.1039/D1TB02073K
– volume: 7
  start-page: 7090
  issue: 45
  year: 2019
  ident: 10.1016/j.compositesb.2023.110550_bib18
  article-title: Topographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies
  publication-title: J Mater Chem B
  doi: 10.1039/C9TB01682A
– volume: 26
  year: 2019
  ident: 10.1016/j.compositesb.2023.110550_bib41
  article-title: Biochemical basis and metabolic interplay of redox regulation
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2019.101284
– volume: 27
  start-page: 396
  issue: 3
  year: 2020
  ident: 10.1016/j.compositesb.2023.110550_bib54
  article-title: Distinct regulatory programs control the latent regenerative potential of dermal fibroblasts during wound healing
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2020.07.008
– volume: 9
  start-page: 65
  issue: 1
  year: 2019
  ident: 10.1016/j.compositesb.2023.110550_bib21
  article-title: Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration
  publication-title: Theranostics
  doi: 10.7150/thno.29766
– volume: 95
  start-page: 418
  year: 2019
  ident: 10.1016/j.compositesb.2023.110550_bib56
  article-title: Effective stacking and transplantation of stem cell sheets using exogenous ROS-producing film for accelerated wound healing
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2019.01.019
– volume: 44–46
  start-page: 113
  year: 2015
  ident: 10.1016/j.compositesb.2023.110550_bib75
  article-title: Matrix remodeling by MMPs during wound repair
  publication-title: Matrix Biol
  doi: 10.1016/j.matbio.2015.03.002
– volume: 231
  year: 2022
  ident: 10.1016/j.compositesb.2023.110550_bib64
  article-title: Modified nanofiber containing chitosan and graphene oxide-magnetite nanoparticles as effective materials for smart wound dressing
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2021.109557
– volume: 222
  start-page: 847
  issue: 7
  year: 2017
  ident: 10.1016/j.compositesb.2023.110550_bib51
  article-title: Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2017.02.006
– volume: 9
  start-page: 1530
  issue: 5
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib9
  article-title: Advances of hydrogel dressings in diabetic wounds
  publication-title: Biomater Sci
  doi: 10.1039/D0BM01747G
– volume: 276
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib47
  article-title: Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.121037
– volume: 109
  start-page: 453
  issue: 4
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib66
  article-title: Skin wound healing assisted by angiogenic targeted tissue engineering: a comprehensive review of bioengineered approaches
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.a.37105
– volume: 6
  start-page: 6731
  issue: 42
  year: 2018
  ident: 10.1016/j.compositesb.2023.110550_bib68
  article-title: Porous nanofibrous scaffold incorporated with S1P loaded mesoporous silica nanoparticles and BMP-2 encapsulated PLGA microspheres for enhancing angiogenesis and osteogenesis
  publication-title: J Mater Chem B
  doi: 10.1039/C8TB02138D
– volume: 8
  start-page: 15145
  issue: 24
  year: 2016
  ident: 10.1016/j.compositesb.2023.110550_bib38
  article-title: Bilayer cryogel wound dressing and skin regeneration grafts for the treatment of acute skin wounds
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b04711
– volume: 7
  issue: 16
  year: 2020
  ident: 10.1016/j.compositesb.2023.110550_bib35
  article-title: ROS scavenging biopolymers for anti-inflammatory diseases: classification and formulation
  publication-title: Adv Mater Interfac
  doi: 10.1002/admi.202000632
– volume: 234
  year: 2022
  ident: 10.1016/j.compositesb.2023.110550_bib25
  article-title: Double crosslinking chitosan sponge with antibacterial and hemostatic properties for accelerating wound repair
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2022.109746
– volume: 2022
  year: 2022
  ident: 10.1016/j.compositesb.2023.110550_bib32
  article-title: Single-cell RNA sequencing reveals the interaction of injected ADSCs with lung-originated cells in mouse pulmonary fibrosis
  publication-title: Stem Cell Int
– volume: 9
  start-page: 4098
  issue: 20
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib37
  article-title: Tannic acid-based metal phenolic networks for bio-applications: a review
  publication-title: J Mater Chem B
  doi: 10.1039/D1TB00383F
– volume: 129
  start-page: 1
  year: 2018
  ident: 10.1016/j.compositesb.2023.110550_bib5
  article-title: Wound healing and scar wars
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2018.05.010
– volume: 2
  start-page: 379
  issue: 7
  year: 2013
  ident: 10.1016/j.compositesb.2023.110550_bib74
  article-title: Neutrophils and wound repair: positive actions and negative reactions
  publication-title: Adv Wound Care
  doi: 10.1089/wound.2012.0383
– volume: 31
  start-page: 868
  issue: 3
  year: 2017
  ident: 10.1016/j.compositesb.2023.110550_bib60
  article-title: Interleukin-10-mediated regenerative postnatal tissue repair is dependent on regulation of hyaluronan metabolism via fibroblast-specific STAT3 signaling
  publication-title: Faseb J
  doi: 10.1096/fj.201600856R
– volume: 83
  start-page: 169
  year: 2016
  ident: 10.1016/j.compositesb.2023.110550_bib22
  article-title: Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.01.002
– volume: 19
  start-page: 369
  issue: 6
  year: 2019
  ident: 10.1016/j.compositesb.2023.110550_bib69
  article-title: Macrophages as regulators of tumour immunity and immunotherapy
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-019-0127-6
– volume: 1
  start-page: 10
  issue: 1
  year: 2012
  ident: 10.1016/j.compositesb.2023.110550_bib23
  article-title: Regulation of macrophage polarization and wound healing
  publication-title: Adv Wound Care
  doi: 10.1089/wound.2011.0307
– volume: 2
  start-page: 357
  issue: 7
  year: 2013
  ident: 10.1016/j.compositesb.2023.110550_bib62
  article-title: Disclosure of the culprits: macrophages-versatile regulators of wound healing
  publication-title: Adv Wound Care
  doi: 10.1089/wound.2012.0407
– volume: 305
  year: 2023
  ident: 10.1016/j.compositesb.2023.110550_bib78
  article-title: Polyphenolic-modified cellulose acetate membrane for bone regeneration through immunomodulation
  publication-title: Carbohyd Polym
  doi: 10.1016/j.carbpol.2023.120546
– year: 2022
  ident: 10.1016/j.compositesb.2023.110550_bib1
  article-title: Design the molecule structures to achieve functional advantages of hydrogel wound dressings: advances and strategies
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2022.110313
– volume: 7
  start-page: 77
  issue: 3
  year: 2018
  ident: 10.1016/j.compositesb.2023.110550_bib4
  article-title: Publicly reported wound healing rates: the fantasy and the reality
  publication-title: Adv Wound Care
  doi: 10.1089/wound.2017.0743
– volume: 32
  start-page: 204
  issue: 3
  year: 2019
  ident: 10.1016/j.compositesb.2023.110550_bib49
  article-title: Metabolic immunomodulation of macrophage functional plasticity in nonhealing wounds
  publication-title: Curr Opin Infect Dis
  doi: 10.1097/QCO.0000000000000550
– volume: 7
  issue: 1
  year: 2017
  ident: 10.1016/j.compositesb.2023.110550_bib76
  article-title: Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling
  publication-title: Sci Rep
– volume: 6
  start-page: 3254
  issue: 10
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib67
  article-title: Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2021.02.033
– volume: 573
  year: 2020
  ident: 10.1016/j.compositesb.2023.110550_bib8
  article-title: Hydrogel-based commercial products for biomedical applications: a review
  publication-title: Int J Pharm (Amst)
– volume: 9
  start-page: 7182
  issue: 35
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib26
  article-title: Tannic acid-inspired, self-healing, and dual stimuli responsive dynamic hydrogel with potent antibacterial and anti-oxidative properties
  publication-title: J Mater Chem B
  doi: 10.1039/D1TB00156F
– volume: 90
  start-page: 179
  year: 2019
  ident: 10.1016/j.compositesb.2023.110550_bib58
  article-title: Coacervate-mediated exogenous growth factor delivery for scarless skin regeneration
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2019.03.052
– volume: 9
  start-page: 1850
  issue: 7
  year: 2022
  ident: 10.1016/j.compositesb.2023.110550_bib7
  article-title: Leveraging the advancements in functional biomaterials and scaffold fabrication technologies for chronic wound healing applications
  publication-title: Mater Horiz
  doi: 10.1039/D2MH00115B
– volume: 11
  start-page: 206
  year: 2022
  ident: 10.1016/j.compositesb.2023.110550_bib17
  article-title: The diameter factor of aligned membranes facilitates wound healing by promoting epithelialization in an immune way
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2021.09.022
– volume: 9
  issue: 5
  year: 2020
  ident: 10.1016/j.compositesb.2023.110550_bib28
  article-title: Advances and impact of antioxidant hydrogel in chronic wound healing
  publication-title: Adv. Health Mater.
  doi: 10.1002/adhm.201901502
– volume: 9
  start-page: 4803
  issue: 14
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib39
  article-title: Decellularized scaffold and its elicited immune response towards the host: the underlying mechanism and means of immunomodulatory modification
  publication-title: Biomater Sci
  doi: 10.1039/D1BM00470K
– volume: 217
  issue: 1
  year: 2020
  ident: 10.1016/j.compositesb.2023.110550_bib29
  article-title: Biology and therapeutic potential of interleukin-10
  publication-title: J Exp Med
  doi: 10.1084/jem.20190418
– volume: 112
  start-page: 33
  issue: 3
  year: 2017
  ident: 10.1016/j.compositesb.2023.110550_bib31
  article-title: IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-017-0622-5
– volume: 8
  start-page: 10023
  issue: 44
  year: 2020
  ident: 10.1016/j.compositesb.2023.110550_bib12
  article-title: Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives
  publication-title: J Mater Chem B
  doi: 10.1039/D0TB01534B
– volume: 6
  start-page: 3218
  issue: 10
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib50
  article-title: Programmable immune activating electrospun fibers for skin regeneration
  publication-title: Bioact Mater
  doi: 10.1016/j.bioactmat.2021.02.022
– volume: 25
  start-page: 294
  issue: 4
  year: 2019
  ident: 10.1016/j.compositesb.2023.110550_bib53
  article-title: Regenerative scar-free skin wound healing
  publication-title: Tissue Eng B Rev
  doi: 10.1089/ten.teb.2018.0350
– volume: 243
  year: 2022
  ident: 10.1016/j.compositesb.2023.110550_bib33
  article-title: Accelerated bone defect regeneration through sequential activation of the M1 and M2 phenotypes of macrophages by a composite BMP-2@SIS hydrogel: an immunomodulatory perspective
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2022.110149
– volume: 72
  start-page: 138
  year: 2015
  ident: 10.1016/j.compositesb.2023.110550_bib59
  article-title: Controlled dual delivery of fibroblast growth factor-2 and Interleukin-10 by heparin-based coacervate synergistically enhances ischemic heart repair
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.08.050
– volume: 18
  start-page: 1698
  issue: 8
  year: 2017
  ident: 10.1016/j.compositesb.2023.110550_bib73
  article-title: Scar prevention and enhanced wound healing induced by polydeoxyribonucleotide in a rat incisional wound-healing model
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms18081698
– volume: 236
  start-page: 109
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib45
  article-title: Macrophage polarization and diabetic wound healing
  publication-title: Transl Res
  doi: 10.1016/j.trsl.2021.05.006
– volume: 118
  start-page: 3787
  issue: 10
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib3
  article-title: Mechano-regulation of vascular network formation without branches in 3D bioprinted cell-laden hydrogel constructs
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.27854
– volume: 184
  start-page: 3964
  issue: 7
  year: 2010
  ident: 10.1016/j.compositesb.2023.110550_bib14
  article-title: Differential roles of macrophages in diverse phases of skin repair
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0903356
– volume: 5
  start-page: 1858
  issue: 9
  year: 2017
  ident: 10.1016/j.compositesb.2023.110550_bib57
  article-title: Fibroblast fate regulation by time dependent TGF-β1 and IL-10 stimulation in biomimetic 3D matrices
  publication-title: Biomater Sci
  doi: 10.1039/C7BM00286F
– volume: 9
  start-page: 3136
  issue: 8
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib63
  article-title: Localized temporal co-delivery of interleukin 10 and decorin genes using amediated by collagen-based biphasic scaffold modulates the expression of TGF-β1/β2 in a rabbit ear hypertrophic scarring model
  publication-title: Biomater Sci
  doi: 10.1039/D0BM01928C
– volume: 22
  start-page: 950
  issue: 2
  year: 2021
  ident: 10.1016/j.compositesb.2023.110550_bib15
  article-title: Macrophages in healing wounds: paradoxes and paradigms
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22020950
– volume: 29
  start-page: 135
  year: 2016
  ident: 10.1016/j.compositesb.2023.110550_bib10
  article-title: Preparation and characterization of pro-angiogenic gel derived from small intestinal submucosa
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2015.10.013
SSID ssj0004532
Score 2.5126042
Snippet Small intestinal submucosa (SIS) hydrogel is a potential candidate for wound dressing since its excellent biocompatibility and bioactivities. However, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110550
SubjectTerms Interleukin-10
Skin defect
Small intestinal submucosa
Tannic acid
Title Acceleration of wound healing by composite small intestinal submucosa hydrogels through immunomodulation
URI https://dx.doi.org/10.1016/j.compositesb.2023.110550
Volume 254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB76ANGD-MT6KCt4Tdu8Ngl4KcVSFXvRQm9hN9lopW1KW5Fe_O3ONJsaQVDwmMeEZWZ351vyzTcAV0QLipXwDGknseFI08El5XlGYvHAc50o8VpUjfzQ572Bczd0hyXo5LUwRKvUe3-2p693a32nqb3ZnI1GzUeTxOdsTn-K1qokZahamO39ClTbt_e9fkE0fN2njN43yGALLr9oXsTcJnqUWsgGtRInXrxLVfg_palC6unuwa7GjKydDWsfSmp6ADsFJcFDeGlHESaQLJwsTdg7tUtiBAPxOZMrthkBW0zEeMxIJwKXN314gTmRiOuCvaziefqM42C6fw8bUf1IOklj3ebrCAbdm6dOz9BNFIzItsyl4di-HyWR9BE6BKbjSkRwQinpCzqKIAASrYCUzT0eI3RVeL4QXLTMhAeYuqXy7GOoTNOpOgEW25wjwhDCFb6jLE-2Yun4GFNOmvyBqIGf-yyMtMI4NboYhzmV7DUsuDskd4eZu2tgbUxnmczGX4yu88CE3-ZMiOngd_PT_5mfwTZdZSyec6gs52_qAgHKUtah3Pgw63oafgLMR-lH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba8IwFD44B7s8jF2Zu2aw107bpmkLexGZ6Ly8TMG3krTpdKgVdQz__XJs6joYbLDXpqeEk8v5Qr98H8A90oIiyV1D2HFkUGFStaRc14gt5rsODWO3greRO13W6NPngTMoQC27C4O0Sr33p3v6erfWT8o6m-XZaFR-MVF8zmb4p2itSrIF2xRNrYuwXW22Gt2caPjapwzfNzBgB-6-aF7I3EZ6lFyIB7QSR168g7fwfypTudJTP4QDjRlJNe3WERTk9Bj2c0qCJzCshqEqIOlwkiQmH2iXRBAGqnYiVmTTA7KY8PGYoE6EWt744YWqiUhc52S4iubJq-oH0f49ZIT3R5JJEmmbr1Po1596tYahTRSM0LbMpUFtzwvjUHgKOvgmdYRCcFxK4XE8iigAxCs-Kpu7LFLQVarzBWe8YsbMV6VbSNc-g-I0mcpzIJHNmEIYnDvco9JyRSUS1FNjylCT3-cl8LKcBaFWGEeji3GQUcnegly6A0x3kKa7BNYmdJbKbPwl6DEbmODbnAlUOfg9_OJ_4bew2-h12kG72W1dwh62pIyeKygu5-_yWoGVpbjRk_ETTc3rLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acceleration+of+wound+healing+by+composite+small+intestinal+submucosa+hydrogels+through+immunomodulation&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Zhang%2C+Qing-Yi&rft.au=Tan%2C+Jie&rft.au=Nie%2C+Rong&rft.au=Song%2C+Yu-Ting&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=1359-8368&rft.eissn=1879-1069&rft.volume=254&rft_id=info:doi/10.1016%2Fj.compositesb.2023.110550&rft.externalDocID=S1359836823000537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon