Acceleration of wound healing by composite small intestinal submucosa hydrogels through immunomodulation
Small intestinal submucosa (SIS) hydrogel is a potential candidate for wound dressing since its excellent biocompatibility and bioactivities. However, the intrinsic lack of sufficient immunomodulatory activities has limited its application. Herein, tannic acid (TA) and interleukin-10 (IL-10) were su...
Saved in:
Published in | Composites. Part B, Engineering Vol. 254; p. 110550 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1359-8368 1879-1069 |
DOI | 10.1016/j.compositesb.2023.110550 |
Cover
Abstract | Small intestinal submucosa (SIS) hydrogel is a potential candidate for wound dressing since its excellent biocompatibility and bioactivities. However, the intrinsic lack of sufficient immunomodulatory activities has limited its application. Herein, tannic acid (TA) and interleukin-10 (IL-10) were supplemented to the SIS hydrogel to fabricate a novel composite hydrogel to confer an immunomodulatory activity. In addition to the improvement in swelling and anti-degradation properties, the composite SIS hydrogel has attained satisfying free radical scavenging and sustained IL-10 release. Meanwhile, the hydrogel possessed excellent anti-oxidative and immunomodulatory abilities to promote the polarization of M2c macrophages, thereby regulating collagen synthesis and providing a favorable immune environment for angiogenesis and extracellular matrix remodeling. Above results have therefore provided a facile but effective strategy to improve the therapeutic effects of the SIS hydrogel and expand its scope of clinical applications.
The composite SIS hydrogel possessed excellent anti-oxidative and immunomodulatory capacities to promote the polarization of M2c macrophages, thereby regulate collagen synthesis and provide a favorable immune environment for angiogenesis and extracellular matrix remodeling. Through these functions, the composite SIS hydrogel could effectively facilitate wound healing and attenuate scar hyperplasia. [Display omitted] |
---|---|
AbstractList | Small intestinal submucosa (SIS) hydrogel is a potential candidate for wound dressing since its excellent biocompatibility and bioactivities. However, the intrinsic lack of sufficient immunomodulatory activities has limited its application. Herein, tannic acid (TA) and interleukin-10 (IL-10) were supplemented to the SIS hydrogel to fabricate a novel composite hydrogel to confer an immunomodulatory activity. In addition to the improvement in swelling and anti-degradation properties, the composite SIS hydrogel has attained satisfying free radical scavenging and sustained IL-10 release. Meanwhile, the hydrogel possessed excellent anti-oxidative and immunomodulatory abilities to promote the polarization of M2c macrophages, thereby regulating collagen synthesis and providing a favorable immune environment for angiogenesis and extracellular matrix remodeling. Above results have therefore provided a facile but effective strategy to improve the therapeutic effects of the SIS hydrogel and expand its scope of clinical applications.
The composite SIS hydrogel possessed excellent anti-oxidative and immunomodulatory capacities to promote the polarization of M2c macrophages, thereby regulate collagen synthesis and provide a favorable immune environment for angiogenesis and extracellular matrix remodeling. Through these functions, the composite SIS hydrogel could effectively facilitate wound healing and attenuate scar hyperplasia. [Display omitted] |
ArticleNumber | 110550 |
Author | Jiang, Yan-Lin Xie, Hui-Qi Zhang, Xiu-Zhen Zhang, Qing-Yi Zhao, Long-Mei Yuan, Qi-Juan Li-Ling, Jesse Zhou, Xing-Li Zou, Chen-Yu Song, Yu-Ting Nie, Rong Feng, Zi-Yuan Liu, Li-Min Tan, Jie Huang, Kai |
Author_xml | – sequence: 1 givenname: Qing-Yi surname: Zhang fullname: Zhang, Qing-Yi organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China – sequence: 2 givenname: Jie surname: Tan fullname: Tan, Jie organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China – sequence: 3 givenname: Rong surname: Nie fullname: Nie, Rong organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China – sequence: 4 givenname: Yu-Ting surname: Song fullname: Song, Yu-Ting organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China – sequence: 5 givenname: Xing-Li surname: Zhou fullname: Zhou, Xing-Li organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China – sequence: 6 givenname: Zi-Yuan surname: Feng fullname: Feng, Zi-Yuan organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China – sequence: 7 givenname: Kai surname: Huang fullname: Huang, Kai organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China – sequence: 8 givenname: Chen-Yu surname: Zou fullname: Zou, Chen-Yu organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China – sequence: 9 givenname: Qi-Juan surname: Yuan fullname: Yuan, Qi-Juan organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China – sequence: 10 givenname: Long-Mei surname: Zhao fullname: Zhao, Long-Mei organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China – sequence: 11 givenname: Xiu-Zhen surname: Zhang fullname: Zhang, Xiu-Zhen organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China – sequence: 12 givenname: Yan-Lin surname: Jiang fullname: Jiang, Yan-Lin organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China – sequence: 13 givenname: Li-Min surname: Liu fullname: Liu, Li-Min organization: Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China – sequence: 14 givenname: Jesse surname: Li-Ling fullname: Li-Ling, Jesse organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China – sequence: 15 givenname: Hui-Qi orcidid: 0000-0003-0760-0853 surname: Xie fullname: Xie, Hui-Qi email: xiehuiqi@scu.edu.cn organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China |
BookMark | eNqNkMtOwzAQRS1UJFrgH8wHpNhJ7NgrVFW8pEpsYG05zqRx5diVnYD69_SBEGLV1Z3NPXN1ZmjigweE7iiZU0L5_WZuQr8NyQ6Q6nlO8mJOKWGMXKApFZXMKOFysr8LJjNRcHGFZiltCCElK_Ip6hbGgIOoBxs8Di3-CqNvcAfaWb_G9Q7_8nHqtXPY-v2rwXrtcBrrfjQhadztmhjW4BIeuhjGdYdt348-9KEZ3ZF9gy5b7RLc_uQ1-nh6fF--ZKu359flYpWZIqdDVhZCmNbUoiqppCWrGWcaoBa6KguZM6KJNLoUFW8EbYDJSnNNaMtlznkNVXGNHk5cE0NKEVpl7HBcMERtnaJEHcSpjfojTh3EqZO4PUH-I2yj7XXcndVdnrp7FfBpIapkLHgDjY1gBtUEewblGyv5lcE |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_147985 crossref_primary_10_1016_j_matdes_2024_112902 crossref_primary_10_1016_j_cej_2024_150756 crossref_primary_10_1039_D4TB00772G crossref_primary_10_1016_j_compositesb_2024_111975 crossref_primary_10_1016_j_compositesb_2023_110985 crossref_primary_10_1016_j_compositesb_2023_110701 crossref_primary_10_1016_j_cej_2024_158387 crossref_primary_10_1016_j_ijbiomac_2024_137633 crossref_primary_10_1080_00914037_2023_2235875 crossref_primary_10_1016_j_mtbio_2024_101032 crossref_primary_10_1016_j_compositesb_2024_111223 crossref_primary_10_1039_D3TB02335D crossref_primary_10_1039_D3TB02214E crossref_primary_10_1016_j_jconrel_2024_03_054 crossref_primary_10_1016_j_apmt_2024_102293 crossref_primary_10_1002_adfm_202315382 crossref_primary_10_1016_j_compositesb_2023_111005 crossref_primary_10_1016_j_ijbiomac_2024_131643 crossref_primary_10_1186_s13287_024_03976_x crossref_primary_10_1016_j_cej_2024_154333 crossref_primary_10_1016_j_cej_2024_154993 crossref_primary_10_1016_j_compositesb_2024_111278 crossref_primary_10_1016_j_jot_2024_07_006 crossref_primary_10_1016_j_eurpolymj_2023_112372 |
Cites_doi | 10.1039/D0BM02058C 10.1016/j.molmed.2020.07.008 10.1016/j.addr.2018.03.012 10.1016/j.biomaterials.2021.121038 10.1186/s13287-019-1383-x 10.1016/j.cclet.2021.09.105 10.3389/fphys.2019.01101 10.1089/wound.2021.0026 10.1039/D2TB00735E 10.1016/j.compositesb.2022.110311 10.1016/j.compositesb.2021.109524 10.1039/D2TB01355J 10.1016/j.bioactmat.2020.05.004 10.1089/wound.2014.0561 10.1016/j.actbio.2016.07.003 10.1111/wrr.12398 10.1016/j.biomaterials.2019.02.017 10.1007/s10456-013-9381-6 10.1111/jcmm.16250 10.1002/star.201200259 10.1021/acs.chemrev.0c00895 10.1038/s41467-021-23482-5 10.1039/C9TB00530G 10.1038/nprot.2013.002 10.1039/D1TB02073K 10.1039/C9TB01682A 10.1016/j.redox.2019.101284 10.1016/j.stem.2020.07.008 10.7150/thno.29766 10.1016/j.actbio.2019.01.019 10.1016/j.matbio.2015.03.002 10.1016/j.compositesb.2021.109557 10.1016/j.imbio.2017.02.006 10.1039/D0BM01747G 10.1016/j.biomaterials.2021.121037 10.1002/jbm.a.37105 10.1039/C8TB02138D 10.1021/acsami.6b04711 10.1002/admi.202000632 10.1016/j.compositesb.2022.109746 10.1039/D1TB00383F 10.1016/j.addr.2018.05.010 10.1089/wound.2012.0383 10.1096/fj.201600856R 10.1016/j.biomaterials.2016.01.002 10.1038/s41577-019-0127-6 10.1089/wound.2011.0307 10.1089/wound.2012.0407 10.1016/j.carbpol.2023.120546 10.1016/j.compositesb.2022.110313 10.1089/wound.2017.0743 10.1097/QCO.0000000000000550 10.1016/j.bioactmat.2021.02.033 10.1039/D1TB00156F 10.1016/j.actbio.2019.03.052 10.1039/D2MH00115B 10.1016/j.bioactmat.2021.09.022 10.1002/adhm.201901502 10.1039/D1BM00470K 10.1084/jem.20190418 10.1007/s00395-017-0622-5 10.1039/D0TB01534B 10.1016/j.bioactmat.2021.02.022 10.1089/ten.teb.2018.0350 10.1016/j.compositesb.2022.110149 10.1016/j.biomaterials.2015.08.050 10.3390/ijms18081698 10.1016/j.trsl.2021.05.006 10.1002/bit.27854 10.4049/jimmunol.0903356 10.1039/C7BM00286F 10.1039/D0BM01928C 10.3390/ijms22020950 10.1016/j.actbio.2015.10.013 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compositesb.2023.110550 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1069 |
ExternalDocumentID | 10_1016_j_compositesb_2023_110550 S1359836823000537 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSM SST SSZ T5K ZMT ~02 ~G- 29F 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AI. AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG SSH VH1 |
ID | FETCH-LOGICAL-c321t-4388cfcb87419145b565aeeb8a7439250a09ca4876d81de597a6a01f69266be73 |
IEDL.DBID | AIKHN |
ISSN | 1359-8368 |
IngestDate | Tue Jul 01 02:03:18 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Fri Feb 23 02:39:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tannic acid Skin defect Interleukin-10 Small intestinal submucosa |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-4388cfcb87419145b565aeeb8a7439250a09ca4876d81de597a6a01f69266be73 |
ORCID | 0000-0003-0760-0853 |
ParticipantIDs | crossref_citationtrail_10_1016_j_compositesb_2023_110550 crossref_primary_10_1016_j_compositesb_2023_110550 elsevier_sciencedirect_doi_10_1016_j_compositesb_2023_110550 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 2023-04-00 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Composites. Part B, Engineering |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hu, Tseng, Chiou, Lan, Chou (bib20) 2019; 10 McArdle, Abbah, Bhowmick, Collin, Pandit (bib63) 2021; 9 Jetten, Verbruggen, Gijbels, Post, De Winther (bib71) 2014; 17 Koo, Hee Hong, Hee Lee, Kwon, Mi Seon (bib56) 2019; 95 DeNardo, Ruffell (bib69) 2019; 19 Liu, Chen, Luo, Zhao, Zhou (bib47) 2021; 276 Pugliese, Coentro, Raghunath, Zeugolis (bib5) 2018; 129 Balaji, Wang, King, Le, Bhattacharya (bib60) 2017; 31 Wang, Wei, Wang, Qian, Liu (bib44) 2022; 247 Chen, Wang, Ma, Huang, Jing (bib72) 2022; 10 Wilgus, Roy, McDaniel (bib74) 2013; 2 Wang, Qi, Luo, Xu, Wang (bib13) 2022; 13 Priya, Gupta, Jain, Sarkar, Damania (bib38) 2016; 8 Cascone, Lamberti (bib8) 2020; 573 Fife, Eckert, Carter (bib4) 2018; 7 Yu, Zhang, Liu, Wang, Shen (bib48) 2022; 230 Shi, Kong, Su, Kuss, Jiang (bib26) 2021; 9 Sindrilaru, Scharffetter-Kochanek (bib62) 2013; 2 Park, Lee, Jeon, Lee, Hwang (bib58) 2019; 90 Wang, Hu, Zhou, Xiong, Zhang (bib76) 2017; 7 Qiao, Xie, Fang, Shen, Li (bib46) 2021; 276 Atcha, Jairaman, Holt, Meli, Nagalla (bib16) 2021; 12 Rohani, Parks (bib75) 2015; 44–46 Feng, Sun, Liu, Wu, Zhao (bib77) 2019; 10 Jeong, Yang, Roh, Kim, Lee (bib73) 2017; 18 Sathishkumar, Gopinath, Zhang, Kang, Xu (bib24) 2022; 10 Lucas, Waisman, Ranjan, Roes, Krieg (bib14) 2010; 184 Wang, Chu, Zhao, Yang, Hu (bib17) 2022; 11 Zhang, Xiao, Wang, Fan, Li (bib18) 2019; 7 Tracy, Minasian, Caterson (bib52) 2016; 5 Mascharak, desJardins-Park, Longaker (bib55) 2020; 26 Jung, Ma, Iyer, DeLeon-Pennell, Yabluchanskiy (bib31) 2017; 112 Nour, Imani, Chaudhry, Sharifi (bib66) 2021; 109 Rahman, Wang, Li, Xu, Wang (bib32) 2022; 2022 Lurier, Dalton, Dampier, Raman, Nassiri (bib51) 2017; 222 Chen, Zhang, Zhang, Sun, Liu (bib50) 2021; 6 Shi, Shi, Xie, Zhao, Li (bib61) 2021; 25 Monavarian, Kader, Moeinzadeh, Jabbari (bib53) 2019; 25 Gu, Zhang, Geng, Wang, Yang (bib67) 2021; 6 Saraiva, Vieira, O’Garra (bib29) 2020; 217 Wang, Zhang, Chao, Qin, Ding (bib10) 2016; 29 Klopfleisch (bib30) 2016; 43 Torres, Commeaux, Troncoso (bib43) 2013; 65 Chen, Lee, Park, Kim, Chu (bib59) 2015; 72 Zhang, Tan, Huang, Nie, Feng (bib78) 2023; 305 Wang, Wang, Xu, Zhang, Lin (bib21) 2019; 9 Zhang, Fu, Yang, Liu, Li (bib35) 2020; 7 Abbasi, Sinha, Labit, Rosin, Yoon (bib54) 2020; 27 Louiselle, Niemiec, Zgheib, Liechty (bib45) 2021; 236 Cao, Huang, Li, Fan, Xie (bib11) 2019; 7 Sapudom, Wu, Chkolnikov, Ansorge, Anderegg (bib57) 2017; 5 Zhang, Wang, Cueto, Effi, Zhang (bib41) 2019; 26 DiPietro, Wilgus, Koh (bib15) 2021; 22 Tan, Zhang, Song, Huang, Jiang (bib33) 2022; 243 Whitaker, Hernaez-Estrada, Hernandez, Santos-Vizcaino, Spiller (bib70) 2021; 121 Liao, Xu, Zhang, Fan, Xie (bib12) 2020; 8 Chen, Zhang, Zhou, Liu, Zhao (bib19) 2020; 5 Ferrante, Leibovich (bib23) 2012; 1 Guo, Xie, Lu, Guo, Xu (bib37) 2021; 9 Hosseini, Abdouss, Mazinani, Soltanabadi, Kalaee (bib64) 2022; 231 Wang, Xu, Zhao, Liu, Wu (bib9) 2021; 9 Anders, Lawton, Ammons (bib49) 2019; 32 Sen (bib2) 2021; 10 Zhang, Qin, Zhou, Nie, Wang (bib68) 2018; 6 Zeng, Zhu, Chen, Zhang, Lu (bib1) 2022 Zhang, Huang, Tan, Lei, Huang (bib42) 2022; 33 Lichtman, Otero-Vinas, Falanga (bib40) 2016; 24 Castaño, Pérez-Amodio, Navarro-Requena, Mateos-Timoneda, Engel (bib6) 2018; 129 Zhang, Pei, Yang, Guo, Yang (bib27) 2022; 10 Geng, Zhang, Gu, Yang, Du (bib65) 2021; 9 Cao, Xu, Li, Zhang, Yang (bib25) 2022; 234 Cheng, Sun, Zhao, Wang, Yu (bib22) 2016; 83 Xu, Han, Gu, Wu (bib28) 2020; 9 Wang, Ge, Tredget, Wu (bib34) 2013; 8 Zhang, Wang, Han, Jin, Xu (bib3) 2021; 118 Shamskhou, Kratochvil, Orcholski, Nagy, Kaber (bib36) 2019; 203 Ali Zahid, Chakraborty, Shamiya, Ravi, Paul (bib7) 2022; 9 Tan, Zhang, Huang, Huang, Xie (bib39) 2021; 9 Chen (10.1016/j.compositesb.2023.110550_bib50) 2021; 6 Ferrante (10.1016/j.compositesb.2023.110550_bib23) 2012; 1 Sapudom (10.1016/j.compositesb.2023.110550_bib57) 2017; 5 Shamskhou (10.1016/j.compositesb.2023.110550_bib36) 2019; 203 Anders (10.1016/j.compositesb.2023.110550_bib49) 2019; 32 Geng (10.1016/j.compositesb.2023.110550_bib65) 2021; 9 Balaji (10.1016/j.compositesb.2023.110550_bib60) 2017; 31 Cascone (10.1016/j.compositesb.2023.110550_bib8) 2020; 573 Lurier (10.1016/j.compositesb.2023.110550_bib51) 2017; 222 Priya (10.1016/j.compositesb.2023.110550_bib38) 2016; 8 Klopfleisch (10.1016/j.compositesb.2023.110550_bib30) 2016; 43 Zhang (10.1016/j.compositesb.2023.110550_bib3) 2021; 118 Wang (10.1016/j.compositesb.2023.110550_bib9) 2021; 9 Chen (10.1016/j.compositesb.2023.110550_bib59) 2015; 72 Lucas (10.1016/j.compositesb.2023.110550_bib14) 2010; 184 Liu (10.1016/j.compositesb.2023.110550_bib47) 2021; 276 Sathishkumar (10.1016/j.compositesb.2023.110550_bib24) 2022; 10 Zhang (10.1016/j.compositesb.2023.110550_bib41) 2019; 26 Wang (10.1016/j.compositesb.2023.110550_bib34) 2013; 8 Jetten (10.1016/j.compositesb.2023.110550_bib71) 2014; 17 Rahman (10.1016/j.compositesb.2023.110550_bib32) 2022; 2022 Park (10.1016/j.compositesb.2023.110550_bib58) 2019; 90 Zhang (10.1016/j.compositesb.2023.110550_bib42) 2022; 33 Sindrilaru (10.1016/j.compositesb.2023.110550_bib62) 2013; 2 Wang (10.1016/j.compositesb.2023.110550_bib76) 2017; 7 Wang (10.1016/j.compositesb.2023.110550_bib10) 2016; 29 Wang (10.1016/j.compositesb.2023.110550_bib17) 2022; 11 Xu (10.1016/j.compositesb.2023.110550_bib28) 2020; 9 Sen (10.1016/j.compositesb.2023.110550_bib2) 2021; 10 Mascharak (10.1016/j.compositesb.2023.110550_bib55) 2020; 26 Whitaker (10.1016/j.compositesb.2023.110550_bib70) 2021; 121 Cao (10.1016/j.compositesb.2023.110550_bib25) 2022; 234 Cao (10.1016/j.compositesb.2023.110550_bib11) 2019; 7 Louiselle (10.1016/j.compositesb.2023.110550_bib45) 2021; 236 Wilgus (10.1016/j.compositesb.2023.110550_bib74) 2013; 2 Shi (10.1016/j.compositesb.2023.110550_bib61) 2021; 25 Wang (10.1016/j.compositesb.2023.110550_bib44) 2022; 247 Fife (10.1016/j.compositesb.2023.110550_bib4) 2018; 7 Chen (10.1016/j.compositesb.2023.110550_bib19) 2020; 5 Wang (10.1016/j.compositesb.2023.110550_bib21) 2019; 9 Castaño (10.1016/j.compositesb.2023.110550_bib6) 2018; 129 Zhang (10.1016/j.compositesb.2023.110550_bib78) 2023; 305 Ali Zahid (10.1016/j.compositesb.2023.110550_bib7) 2022; 9 Wang (10.1016/j.compositesb.2023.110550_bib13) 2022; 13 Zhang (10.1016/j.compositesb.2023.110550_bib18) 2019; 7 Nour (10.1016/j.compositesb.2023.110550_bib66) 2021; 109 Zhang (10.1016/j.compositesb.2023.110550_bib68) 2018; 6 DiPietro (10.1016/j.compositesb.2023.110550_bib15) 2021; 22 Atcha (10.1016/j.compositesb.2023.110550_bib16) 2021; 12 Lichtman (10.1016/j.compositesb.2023.110550_bib40) 2016; 24 Monavarian (10.1016/j.compositesb.2023.110550_bib53) 2019; 25 Chen (10.1016/j.compositesb.2023.110550_bib72) 2022; 10 Rohani (10.1016/j.compositesb.2023.110550_bib75) 2015; 44–46 McArdle (10.1016/j.compositesb.2023.110550_bib63) 2021; 9 Torres (10.1016/j.compositesb.2023.110550_bib43) 2013; 65 Cheng (10.1016/j.compositesb.2023.110550_bib22) 2016; 83 Tan (10.1016/j.compositesb.2023.110550_bib39) 2021; 9 Tracy (10.1016/j.compositesb.2023.110550_bib52) 2016; 5 Feng (10.1016/j.compositesb.2023.110550_bib77) 2019; 10 Zhang (10.1016/j.compositesb.2023.110550_bib27) 2022; 10 Guo (10.1016/j.compositesb.2023.110550_bib37) 2021; 9 Pugliese (10.1016/j.compositesb.2023.110550_bib5) 2018; 129 Hosseini (10.1016/j.compositesb.2023.110550_bib64) 2022; 231 Jung (10.1016/j.compositesb.2023.110550_bib31) 2017; 112 Liao (10.1016/j.compositesb.2023.110550_bib12) 2020; 8 Zeng (10.1016/j.compositesb.2023.110550_bib1) 2022 Zhang (10.1016/j.compositesb.2023.110550_bib35) 2020; 7 Abbasi (10.1016/j.compositesb.2023.110550_bib54) 2020; 27 Saraiva (10.1016/j.compositesb.2023.110550_bib29) 2020; 217 Hu (10.1016/j.compositesb.2023.110550_bib20) 2019; 10 Gu (10.1016/j.compositesb.2023.110550_bib67) 2021; 6 Koo (10.1016/j.compositesb.2023.110550_bib56) 2019; 95 DeNardo (10.1016/j.compositesb.2023.110550_bib69) 2019; 19 Shi (10.1016/j.compositesb.2023.110550_bib26) 2021; 9 Qiao (10.1016/j.compositesb.2023.110550_bib46) 2021; 276 Tan (10.1016/j.compositesb.2023.110550_bib33) 2022; 243 Yu (10.1016/j.compositesb.2023.110550_bib48) 2022; 230 Jeong (10.1016/j.compositesb.2023.110550_bib73) 2017; 18 |
References_xml | – volume: 9 start-page: 1530 year: 2021 end-page: 1546 ident: bib9 article-title: Advances of hydrogel dressings in diabetic wounds publication-title: Biomater Sci – volume: 276 year: 2021 ident: bib46 article-title: Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration publication-title: Biomaterials – volume: 247 year: 2022 ident: bib44 article-title: Quercetin-based composite hydrogel promotes muscle tissue regeneration through macrophage polarization and oxidative stress attenuation publication-title: Compos B Eng – volume: 109 start-page: 453 year: 2021 end-page: 478 ident: bib66 article-title: Skin wound healing assisted by angiogenic targeted tissue engineering: a comprehensive review of bioengineered approaches publication-title: J Biomed Mater Res – volume: 43 start-page: 3 year: 2016 end-page: 13 ident: bib30 article-title: Macrophage reaction against biomaterials in the mouse model - phenotypes, functions and markers publication-title: Acta Biomater – volume: 7 year: 2020 ident: bib35 article-title: ROS scavenging biopolymers for anti-inflammatory diseases: classification and formulation publication-title: Adv Mater Interfac – volume: 8 start-page: 15145 year: 2016 end-page: 15159 ident: bib38 article-title: Bilayer cryogel wound dressing and skin regeneration grafts for the treatment of acute skin wounds publication-title: ACS Appl Mater Interfaces – volume: 27 start-page: 396 year: 2020 end-page: 412.e6 ident: bib54 article-title: Distinct regulatory programs control the latent regenerative potential of dermal fibroblasts during wound healing publication-title: Cell Stem Cell – volume: 7 start-page: 77 year: 2018 end-page: 94 ident: bib4 article-title: Publicly reported wound healing rates: the fantasy and the reality publication-title: Adv Wound Care – volume: 9 start-page: 1850 year: 2022 end-page: 1865 ident: bib7 article-title: Leveraging the advancements in functional biomaterials and scaffold fabrication technologies for chronic wound healing applications publication-title: Mater Horiz – volume: 33 start-page: 1623 year: 2022 end-page: 1626 ident: bib42 article-title: Metal-phenolic networks modified polyurethane as periosteum for bone regeneration publication-title: Chin Chem Lett – volume: 6 start-page: 3254 year: 2021 end-page: 3268 ident: bib67 article-title: Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue publication-title: Bioact Mater – volume: 18 start-page: 1698 year: 2017 ident: bib73 article-title: Scar prevention and enhanced wound healing induced by polydeoxyribonucleotide in a rat incisional wound-healing model publication-title: Int J Mol Sci – volume: 32 start-page: 204 year: 2019 end-page: 209 ident: bib49 article-title: Metabolic immunomodulation of macrophage functional plasticity in nonhealing wounds publication-title: Curr Opin Infect Dis – volume: 2 start-page: 357 year: 2013 end-page: 368 ident: bib62 article-title: Disclosure of the culprits: macrophages-versatile regulators of wound healing publication-title: Adv Wound Care – volume: 222 start-page: 847 year: 2017 end-page: 856 ident: bib51 article-title: Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing publication-title: Immunobiology – volume: 5 start-page: 1858 year: 2017 end-page: 1867 ident: bib57 article-title: Fibroblast fate regulation by time dependent TGF-β1 and IL-10 stimulation in biomimetic 3D matrices publication-title: Biomater Sci – volume: 29 start-page: 135 year: 2016 end-page: 148 ident: bib10 article-title: Preparation and characterization of pro-angiogenic gel derived from small intestinal submucosa publication-title: Acta Biomater – volume: 5 start-page: 880 year: 2020 end-page: 890 ident: bib19 article-title: Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-κB signaling pathway publication-title: Bioact Mater – volume: 573 year: 2020 ident: bib8 article-title: Hydrogel-based commercial products for biomedical applications: a review publication-title: Int J Pharm (Amst) – volume: 6 start-page: 6731 year: 2018 end-page: 6743 ident: bib68 article-title: Porous nanofibrous scaffold incorporated with S1P loaded mesoporous silica nanoparticles and BMP-2 encapsulated PLGA microspheres for enhancing angiogenesis and osteogenesis publication-title: J Mater Chem B – volume: 7 year: 2017 ident: bib76 article-title: Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling publication-title: Sci Rep – volume: 6 start-page: 3218 year: 2021 end-page: 3230 ident: bib50 article-title: Programmable immune activating electrospun fibers for skin regeneration publication-title: Bioact Mater – volume: 112 start-page: 33 year: 2017 ident: bib31 article-title: IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation publication-title: Basic Res Cardiol – volume: 13 year: 2022 ident: bib13 article-title: Inflammatory microenvironment of skin wounds publication-title: Front Immunol – volume: 231 year: 2022 ident: bib64 article-title: Modified nanofiber containing chitosan and graphene oxide-magnetite nanoparticles as effective materials for smart wound dressing publication-title: Compos B Eng – volume: 25 start-page: 1554 year: 2021 end-page: 1567 ident: bib61 article-title: IL-10 alleviates lipopolysaccharide-induced skin scarring via IL-10R/STAT3 axis regulating TLR4/NF-κB pathway in dermal fibroblasts publication-title: J Cell Mol Med – volume: 121 start-page: 11305 year: 2021 end-page: 11335 ident: bib70 article-title: Immunomodulatory biomaterials for tissue repair publication-title: Chem Rev – volume: 276 year: 2021 ident: bib47 article-title: Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration publication-title: Biomaterials – volume: 83 start-page: 169 year: 2016 end-page: 181 ident: bib22 article-title: Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars publication-title: Biomaterials – volume: 10 start-page: 1101 year: 2019 ident: bib77 article-title: Direct and indirect roles of macrophages in hypertrophic scar formation publication-title: Front Physiol – volume: 9 start-page: 2631 year: 2021 end-page: 2646 ident: bib65 article-title: Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration publication-title: Biomater Sci – year: 2022 ident: bib1 article-title: Design the molecule structures to achieve functional advantages of hydrogel wound dressings: advances and strategies publication-title: Compos B Eng – volume: 65 start-page: 543 year: 2013 end-page: 551 ident: bib43 article-title: Starch-based biomaterials for wound-dressing applications publication-title: Starch Staerke – volume: 7 start-page: 5038 year: 2019 end-page: 5055 ident: bib11 article-title: Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair publication-title: J Mater Chem B – volume: 90 start-page: 179 year: 2019 end-page: 191 ident: bib58 article-title: Coacervate-mediated exogenous growth factor delivery for scarless skin regeneration publication-title: Acta Biomater – volume: 7 start-page: 7090 year: 2019 end-page: 7109 ident: bib18 article-title: Topographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies publication-title: J Mater Chem B – volume: 8 start-page: 10023 year: 2020 end-page: 10049 ident: bib12 article-title: Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives publication-title: J Mater Chem B – volume: 12 start-page: 3256 year: 2021 ident: bib16 article-title: Mechanically activated ion channel Piezo 1 modulates macrophage polarization and stiffness sensing publication-title: Nat Commun – volume: 129 start-page: 95 year: 2018 end-page: 117 ident: bib6 article-title: Instructive microenvironments in skin wound healing: biomaterials as signal releasing platforms publication-title: Adv Drug Deliv Rev – volume: 95 start-page: 418 year: 2019 end-page: 426 ident: bib56 article-title: Effective stacking and transplantation of stem cell sheets using exogenous ROS-producing film for accelerated wound healing publication-title: Acta Biomater – volume: 129 start-page: 1 year: 2018 end-page: 3 ident: bib5 article-title: Wound healing and scar wars publication-title: Adv Drug Deliv Rev – volume: 25 start-page: 294 year: 2019 end-page: 311 ident: bib53 article-title: Regenerative scar-free skin wound healing publication-title: Tissue Eng B Rev – volume: 2 start-page: 379 year: 2013 end-page: 388 ident: bib74 article-title: Neutrophils and wound repair: positive actions and negative reactions publication-title: Adv Wound Care – volume: 11 start-page: 206 year: 2022 end-page: 217 ident: bib17 article-title: The diameter factor of aligned membranes facilitates wound healing by promoting epithelialization in an immune way publication-title: Bioact Mater – volume: 5 start-page: 119 year: 2016 end-page: 136 ident: bib52 article-title: Extracellular matrix and dermal fibroblast function in the healing wound publication-title: Adv Wound Care – volume: 9 start-page: 7182 year: 2021 end-page: 7195 ident: bib26 article-title: Tannic acid-inspired, self-healing, and dual stimuli responsive dynamic hydrogel with potent antibacterial and anti-oxidative properties publication-title: J Mater Chem B – volume: 10 start-page: 281 year: 2021 end-page: 292 ident: bib2 article-title: Human wound and its burden: updated 2020 compendium of estimates publication-title: Adv Wound Care – volume: 10 start-page: 275 year: 2019 ident: bib20 article-title: Bone marrow concentrate-induced mesenchymal stem cell conditioned medium facilitates wound healing and prevents hypertrophic scar formation in a rabbit ear model publication-title: Stem Cell Res Ther – volume: 243 year: 2022 ident: bib33 article-title: Accelerated bone defect regeneration through sequential activation of the M1 and M2 phenotypes of macrophages by a composite BMP-2@SIS hydrogel: an immunomodulatory perspective publication-title: Compos B Eng – volume: 26 year: 2019 ident: bib41 article-title: Biochemical basis and metabolic interplay of redox regulation publication-title: Redox Biol – volume: 9 year: 2020 ident: bib28 article-title: Advances and impact of antioxidant hydrogel in chronic wound healing publication-title: Adv. Health Mater. – volume: 10 start-page: 6279 year: 2022 end-page: 6286 ident: bib72 article-title: Mechanically active small intestinal submucosa hydrogel for accelerating chronic wound healing publication-title: J Mater Chem B – volume: 72 start-page: 138 year: 2015 end-page: 151 ident: bib59 article-title: Controlled dual delivery of fibroblast growth factor-2 and Interleukin-10 by heparin-based coacervate synergistically enhances ischemic heart repair publication-title: Biomaterials – volume: 184 start-page: 3964 year: 2010 end-page: 3977 ident: bib14 article-title: Differential roles of macrophages in diverse phases of skin repair publication-title: J Immunol – volume: 203 start-page: 52 year: 2019 end-page: 62 ident: bib36 article-title: Hydrogel-based delivery of IL-10 improves treatment of bleomycin-induced lung fibrosis in mice publication-title: Biomaterials – volume: 19 start-page: 369 year: 2019 end-page: 382 ident: bib69 article-title: Macrophages as regulators of tumour immunity and immunotherapy publication-title: Nat Rev Immunol – volume: 31 start-page: 868 year: 2017 end-page: 881 ident: bib60 article-title: Interleukin-10-mediated regenerative postnatal tissue repair is dependent on regulation of hyaluronan metabolism via fibroblast-specific STAT3 signaling publication-title: Faseb J – volume: 9 start-page: 65 year: 2019 end-page: 76 ident: bib21 article-title: Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration publication-title: Theranostics – volume: 2022 year: 2022 ident: bib32 article-title: Single-cell RNA sequencing reveals the interaction of injected ADSCs with lung-originated cells in mouse pulmonary fibrosis publication-title: Stem Cell Int – volume: 10 start-page: 2296 year: 2022 end-page: 2315 ident: bib24 article-title: Recent progress in tannic acid-driven antibacterial/antifouling surface coating strategies publication-title: J Mater Chem B – volume: 10 start-page: 5439 year: 2022 end-page: 5453 ident: bib27 article-title: Vascularized nanocomposite hydrogel mechanically reinforced by polyelectrolyte-modified nanoparticles publication-title: J Mater Chem B – volume: 26 start-page: 1101 year: 2020 end-page: 1106 ident: bib55 article-title: Fibroblast heterogeneity in wound healing: hurdles to clinical translation publication-title: Trends Mol Med – volume: 234 year: 2022 ident: bib25 article-title: Double crosslinking chitosan sponge with antibacterial and hemostatic properties for accelerating wound repair publication-title: Compos B Eng – volume: 305 year: 2023 ident: bib78 article-title: Polyphenolic-modified cellulose acetate membrane for bone regeneration through immunomodulation publication-title: Carbohyd Polym – volume: 1 start-page: 10 year: 2012 end-page: 16 ident: bib23 article-title: Regulation of macrophage polarization and wound healing publication-title: Adv Wound Care – volume: 236 start-page: 109 year: 2021 end-page: 116 ident: bib45 article-title: Macrophage polarization and diabetic wound healing publication-title: Transl Res – volume: 24 start-page: 215 year: 2016 end-page: 222 ident: bib40 article-title: Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis publication-title: Wound Repair Regen – volume: 8 start-page: 302 year: 2013 end-page: 309 ident: bib34 article-title: The mouse excisional wound splinting model, including applications for stem cell transplantation publication-title: Nat Protoc – volume: 118 start-page: 3787 year: 2021 end-page: 3798 ident: bib3 article-title: Mechano-regulation of vascular network formation without branches in 3D bioprinted cell-laden hydrogel constructs publication-title: Biotechnol Bioeng – volume: 22 start-page: 950 year: 2021 ident: bib15 article-title: Macrophages in healing wounds: paradoxes and paradigms publication-title: Int J Mol Sci – volume: 9 start-page: 4803 year: 2021 end-page: 4820 ident: bib39 article-title: Decellularized scaffold and its elicited immune response towards the host: the underlying mechanism and means of immunomodulatory modification publication-title: Biomater Sci – volume: 9 start-page: 3136 year: 2021 end-page: 3149 ident: bib63 article-title: Localized temporal co-delivery of interleukin 10 and decorin genes using amediated by collagen-based biphasic scaffold modulates the expression of TGF-β1/β2 in a rabbit ear hypertrophic scarring model publication-title: Biomater Sci – volume: 44–46 start-page: 113 year: 2015 end-page: 121 ident: bib75 article-title: Matrix remodeling by MMPs during wound repair publication-title: Matrix Biol – volume: 217 year: 2020 ident: bib29 article-title: Biology and therapeutic potential of interleukin-10 publication-title: J Exp Med – volume: 17 start-page: 109 year: 2014 end-page: 118 ident: bib71 article-title: Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo publication-title: Angiogenesis – volume: 9 start-page: 4098 year: 2021 end-page: 4110 ident: bib37 article-title: Tannic acid-based metal phenolic networks for bio-applications: a review publication-title: J Mater Chem B – volume: 230 year: 2022 ident: bib48 article-title: Extracellular matrix scaffold-immune microenvironment modulates tissue regeneration publication-title: Compos B Eng – volume: 9 start-page: 2631 issue: 7 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib65 article-title: Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration publication-title: Biomater Sci doi: 10.1039/D0BM02058C – volume: 26 start-page: 1101 issue: 12 year: 2020 ident: 10.1016/j.compositesb.2023.110550_bib55 article-title: Fibroblast heterogeneity in wound healing: hurdles to clinical translation publication-title: Trends Mol Med doi: 10.1016/j.molmed.2020.07.008 – volume: 129 start-page: 95 year: 2018 ident: 10.1016/j.compositesb.2023.110550_bib6 article-title: Instructive microenvironments in skin wound healing: biomaterials as signal releasing platforms publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2018.03.012 – volume: 276 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib46 article-title: Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121038 – volume: 10 start-page: 275 issue: 1 year: 2019 ident: 10.1016/j.compositesb.2023.110550_bib20 article-title: Bone marrow concentrate-induced mesenchymal stem cell conditioned medium facilitates wound healing and prevents hypertrophic scar formation in a rabbit ear model publication-title: Stem Cell Res Ther doi: 10.1186/s13287-019-1383-x – volume: 33 start-page: 1623 issue: 3 year: 2022 ident: 10.1016/j.compositesb.2023.110550_bib42 article-title: Metal-phenolic networks modified polyurethane as periosteum for bone regeneration publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2021.09.105 – volume: 10 start-page: 1101 year: 2019 ident: 10.1016/j.compositesb.2023.110550_bib77 article-title: Direct and indirect roles of macrophages in hypertrophic scar formation publication-title: Front Physiol doi: 10.3389/fphys.2019.01101 – volume: 10 start-page: 281 issue: 5 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib2 article-title: Human wound and its burden: updated 2020 compendium of estimates publication-title: Adv Wound Care doi: 10.1089/wound.2021.0026 – volume: 13 year: 2022 ident: 10.1016/j.compositesb.2023.110550_bib13 article-title: Inflammatory microenvironment of skin wounds publication-title: Front Immunol – volume: 10 start-page: 5439 issue: 28 year: 2022 ident: 10.1016/j.compositesb.2023.110550_bib27 article-title: Vascularized nanocomposite hydrogel mechanically reinforced by polyelectrolyte-modified nanoparticles publication-title: J Mater Chem B doi: 10.1039/D2TB00735E – volume: 247 year: 2022 ident: 10.1016/j.compositesb.2023.110550_bib44 article-title: Quercetin-based composite hydrogel promotes muscle tissue regeneration through macrophage polarization and oxidative stress attenuation publication-title: Compos B Eng doi: 10.1016/j.compositesb.2022.110311 – volume: 230 year: 2022 ident: 10.1016/j.compositesb.2023.110550_bib48 article-title: Extracellular matrix scaffold-immune microenvironment modulates tissue regeneration publication-title: Compos B Eng doi: 10.1016/j.compositesb.2021.109524 – volume: 10 start-page: 6279 issue: 33 year: 2022 ident: 10.1016/j.compositesb.2023.110550_bib72 article-title: Mechanically active small intestinal submucosa hydrogel for accelerating chronic wound healing publication-title: J Mater Chem B doi: 10.1039/D2TB01355J – volume: 5 start-page: 880 issue: 4 year: 2020 ident: 10.1016/j.compositesb.2023.110550_bib19 article-title: Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-κB signaling pathway publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2020.05.004 – volume: 5 start-page: 119 issue: 3 year: 2016 ident: 10.1016/j.compositesb.2023.110550_bib52 article-title: Extracellular matrix and dermal fibroblast function in the healing wound publication-title: Adv Wound Care doi: 10.1089/wound.2014.0561 – volume: 43 start-page: 3 year: 2016 ident: 10.1016/j.compositesb.2023.110550_bib30 article-title: Macrophage reaction against biomaterials in the mouse model - phenotypes, functions and markers publication-title: Acta Biomater doi: 10.1016/j.actbio.2016.07.003 – volume: 24 start-page: 215 issue: 2 year: 2016 ident: 10.1016/j.compositesb.2023.110550_bib40 article-title: Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis publication-title: Wound Repair Regen doi: 10.1111/wrr.12398 – volume: 203 start-page: 52 year: 2019 ident: 10.1016/j.compositesb.2023.110550_bib36 article-title: Hydrogel-based delivery of IL-10 improves treatment of bleomycin-induced lung fibrosis in mice publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.02.017 – volume: 17 start-page: 109 issue: 1 year: 2014 ident: 10.1016/j.compositesb.2023.110550_bib71 article-title: Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo publication-title: Angiogenesis doi: 10.1007/s10456-013-9381-6 – volume: 25 start-page: 1554 issue: 3 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib61 article-title: IL-10 alleviates lipopolysaccharide-induced skin scarring via IL-10R/STAT3 axis regulating TLR4/NF-κB pathway in dermal fibroblasts publication-title: J Cell Mol Med doi: 10.1111/jcmm.16250 – volume: 65 start-page: 543 issue: 7–8 year: 2013 ident: 10.1016/j.compositesb.2023.110550_bib43 article-title: Starch-based biomaterials for wound-dressing applications publication-title: Starch Staerke doi: 10.1002/star.201200259 – volume: 121 start-page: 11305 issue: 18 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib70 article-title: Immunomodulatory biomaterials for tissue repair publication-title: Chem Rev doi: 10.1021/acs.chemrev.0c00895 – volume: 12 start-page: 3256 issue: 1 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib16 article-title: Mechanically activated ion channel Piezo 1 modulates macrophage polarization and stiffness sensing publication-title: Nat Commun doi: 10.1038/s41467-021-23482-5 – volume: 7 start-page: 5038 issue: 33 year: 2019 ident: 10.1016/j.compositesb.2023.110550_bib11 article-title: Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair publication-title: J Mater Chem B doi: 10.1039/C9TB00530G – volume: 8 start-page: 302 issue: 2 year: 2013 ident: 10.1016/j.compositesb.2023.110550_bib34 article-title: The mouse excisional wound splinting model, including applications for stem cell transplantation publication-title: Nat Protoc doi: 10.1038/nprot.2013.002 – volume: 10 start-page: 2296 issue: 14 year: 2022 ident: 10.1016/j.compositesb.2023.110550_bib24 article-title: Recent progress in tannic acid-driven antibacterial/antifouling surface coating strategies publication-title: J Mater Chem B doi: 10.1039/D1TB02073K – volume: 7 start-page: 7090 issue: 45 year: 2019 ident: 10.1016/j.compositesb.2023.110550_bib18 article-title: Topographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies publication-title: J Mater Chem B doi: 10.1039/C9TB01682A – volume: 26 year: 2019 ident: 10.1016/j.compositesb.2023.110550_bib41 article-title: Biochemical basis and metabolic interplay of redox regulation publication-title: Redox Biol doi: 10.1016/j.redox.2019.101284 – volume: 27 start-page: 396 issue: 3 year: 2020 ident: 10.1016/j.compositesb.2023.110550_bib54 article-title: Distinct regulatory programs control the latent regenerative potential of dermal fibroblasts during wound healing publication-title: Cell Stem Cell doi: 10.1016/j.stem.2020.07.008 – volume: 9 start-page: 65 issue: 1 year: 2019 ident: 10.1016/j.compositesb.2023.110550_bib21 article-title: Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration publication-title: Theranostics doi: 10.7150/thno.29766 – volume: 95 start-page: 418 year: 2019 ident: 10.1016/j.compositesb.2023.110550_bib56 article-title: Effective stacking and transplantation of stem cell sheets using exogenous ROS-producing film for accelerated wound healing publication-title: Acta Biomater doi: 10.1016/j.actbio.2019.01.019 – volume: 44–46 start-page: 113 year: 2015 ident: 10.1016/j.compositesb.2023.110550_bib75 article-title: Matrix remodeling by MMPs during wound repair publication-title: Matrix Biol doi: 10.1016/j.matbio.2015.03.002 – volume: 231 year: 2022 ident: 10.1016/j.compositesb.2023.110550_bib64 article-title: Modified nanofiber containing chitosan and graphene oxide-magnetite nanoparticles as effective materials for smart wound dressing publication-title: Compos B Eng doi: 10.1016/j.compositesb.2021.109557 – volume: 222 start-page: 847 issue: 7 year: 2017 ident: 10.1016/j.compositesb.2023.110550_bib51 article-title: Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing publication-title: Immunobiology doi: 10.1016/j.imbio.2017.02.006 – volume: 9 start-page: 1530 issue: 5 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib9 article-title: Advances of hydrogel dressings in diabetic wounds publication-title: Biomater Sci doi: 10.1039/D0BM01747G – volume: 276 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib47 article-title: Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121037 – volume: 109 start-page: 453 issue: 4 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib66 article-title: Skin wound healing assisted by angiogenic targeted tissue engineering: a comprehensive review of bioengineered approaches publication-title: J Biomed Mater Res doi: 10.1002/jbm.a.37105 – volume: 6 start-page: 6731 issue: 42 year: 2018 ident: 10.1016/j.compositesb.2023.110550_bib68 article-title: Porous nanofibrous scaffold incorporated with S1P loaded mesoporous silica nanoparticles and BMP-2 encapsulated PLGA microspheres for enhancing angiogenesis and osteogenesis publication-title: J Mater Chem B doi: 10.1039/C8TB02138D – volume: 8 start-page: 15145 issue: 24 year: 2016 ident: 10.1016/j.compositesb.2023.110550_bib38 article-title: Bilayer cryogel wound dressing and skin regeneration grafts for the treatment of acute skin wounds publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b04711 – volume: 7 issue: 16 year: 2020 ident: 10.1016/j.compositesb.2023.110550_bib35 article-title: ROS scavenging biopolymers for anti-inflammatory diseases: classification and formulation publication-title: Adv Mater Interfac doi: 10.1002/admi.202000632 – volume: 234 year: 2022 ident: 10.1016/j.compositesb.2023.110550_bib25 article-title: Double crosslinking chitosan sponge with antibacterial and hemostatic properties for accelerating wound repair publication-title: Compos B Eng doi: 10.1016/j.compositesb.2022.109746 – volume: 2022 year: 2022 ident: 10.1016/j.compositesb.2023.110550_bib32 article-title: Single-cell RNA sequencing reveals the interaction of injected ADSCs with lung-originated cells in mouse pulmonary fibrosis publication-title: Stem Cell Int – volume: 9 start-page: 4098 issue: 20 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib37 article-title: Tannic acid-based metal phenolic networks for bio-applications: a review publication-title: J Mater Chem B doi: 10.1039/D1TB00383F – volume: 129 start-page: 1 year: 2018 ident: 10.1016/j.compositesb.2023.110550_bib5 article-title: Wound healing and scar wars publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2018.05.010 – volume: 2 start-page: 379 issue: 7 year: 2013 ident: 10.1016/j.compositesb.2023.110550_bib74 article-title: Neutrophils and wound repair: positive actions and negative reactions publication-title: Adv Wound Care doi: 10.1089/wound.2012.0383 – volume: 31 start-page: 868 issue: 3 year: 2017 ident: 10.1016/j.compositesb.2023.110550_bib60 article-title: Interleukin-10-mediated regenerative postnatal tissue repair is dependent on regulation of hyaluronan metabolism via fibroblast-specific STAT3 signaling publication-title: Faseb J doi: 10.1096/fj.201600856R – volume: 83 start-page: 169 year: 2016 ident: 10.1016/j.compositesb.2023.110550_bib22 article-title: Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.002 – volume: 19 start-page: 369 issue: 6 year: 2019 ident: 10.1016/j.compositesb.2023.110550_bib69 article-title: Macrophages as regulators of tumour immunity and immunotherapy publication-title: Nat Rev Immunol doi: 10.1038/s41577-019-0127-6 – volume: 1 start-page: 10 issue: 1 year: 2012 ident: 10.1016/j.compositesb.2023.110550_bib23 article-title: Regulation of macrophage polarization and wound healing publication-title: Adv Wound Care doi: 10.1089/wound.2011.0307 – volume: 2 start-page: 357 issue: 7 year: 2013 ident: 10.1016/j.compositesb.2023.110550_bib62 article-title: Disclosure of the culprits: macrophages-versatile regulators of wound healing publication-title: Adv Wound Care doi: 10.1089/wound.2012.0407 – volume: 305 year: 2023 ident: 10.1016/j.compositesb.2023.110550_bib78 article-title: Polyphenolic-modified cellulose acetate membrane for bone regeneration through immunomodulation publication-title: Carbohyd Polym doi: 10.1016/j.carbpol.2023.120546 – year: 2022 ident: 10.1016/j.compositesb.2023.110550_bib1 article-title: Design the molecule structures to achieve functional advantages of hydrogel wound dressings: advances and strategies publication-title: Compos B Eng doi: 10.1016/j.compositesb.2022.110313 – volume: 7 start-page: 77 issue: 3 year: 2018 ident: 10.1016/j.compositesb.2023.110550_bib4 article-title: Publicly reported wound healing rates: the fantasy and the reality publication-title: Adv Wound Care doi: 10.1089/wound.2017.0743 – volume: 32 start-page: 204 issue: 3 year: 2019 ident: 10.1016/j.compositesb.2023.110550_bib49 article-title: Metabolic immunomodulation of macrophage functional plasticity in nonhealing wounds publication-title: Curr Opin Infect Dis doi: 10.1097/QCO.0000000000000550 – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.compositesb.2023.110550_bib76 article-title: Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling publication-title: Sci Rep – volume: 6 start-page: 3254 issue: 10 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib67 article-title: Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2021.02.033 – volume: 573 year: 2020 ident: 10.1016/j.compositesb.2023.110550_bib8 article-title: Hydrogel-based commercial products for biomedical applications: a review publication-title: Int J Pharm (Amst) – volume: 9 start-page: 7182 issue: 35 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib26 article-title: Tannic acid-inspired, self-healing, and dual stimuli responsive dynamic hydrogel with potent antibacterial and anti-oxidative properties publication-title: J Mater Chem B doi: 10.1039/D1TB00156F – volume: 90 start-page: 179 year: 2019 ident: 10.1016/j.compositesb.2023.110550_bib58 article-title: Coacervate-mediated exogenous growth factor delivery for scarless skin regeneration publication-title: Acta Biomater doi: 10.1016/j.actbio.2019.03.052 – volume: 9 start-page: 1850 issue: 7 year: 2022 ident: 10.1016/j.compositesb.2023.110550_bib7 article-title: Leveraging the advancements in functional biomaterials and scaffold fabrication technologies for chronic wound healing applications publication-title: Mater Horiz doi: 10.1039/D2MH00115B – volume: 11 start-page: 206 year: 2022 ident: 10.1016/j.compositesb.2023.110550_bib17 article-title: The diameter factor of aligned membranes facilitates wound healing by promoting epithelialization in an immune way publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2021.09.022 – volume: 9 issue: 5 year: 2020 ident: 10.1016/j.compositesb.2023.110550_bib28 article-title: Advances and impact of antioxidant hydrogel in chronic wound healing publication-title: Adv. Health Mater. doi: 10.1002/adhm.201901502 – volume: 9 start-page: 4803 issue: 14 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib39 article-title: Decellularized scaffold and its elicited immune response towards the host: the underlying mechanism and means of immunomodulatory modification publication-title: Biomater Sci doi: 10.1039/D1BM00470K – volume: 217 issue: 1 year: 2020 ident: 10.1016/j.compositesb.2023.110550_bib29 article-title: Biology and therapeutic potential of interleukin-10 publication-title: J Exp Med doi: 10.1084/jem.20190418 – volume: 112 start-page: 33 issue: 3 year: 2017 ident: 10.1016/j.compositesb.2023.110550_bib31 article-title: IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation publication-title: Basic Res Cardiol doi: 10.1007/s00395-017-0622-5 – volume: 8 start-page: 10023 issue: 44 year: 2020 ident: 10.1016/j.compositesb.2023.110550_bib12 article-title: Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives publication-title: J Mater Chem B doi: 10.1039/D0TB01534B – volume: 6 start-page: 3218 issue: 10 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib50 article-title: Programmable immune activating electrospun fibers for skin regeneration publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2021.02.022 – volume: 25 start-page: 294 issue: 4 year: 2019 ident: 10.1016/j.compositesb.2023.110550_bib53 article-title: Regenerative scar-free skin wound healing publication-title: Tissue Eng B Rev doi: 10.1089/ten.teb.2018.0350 – volume: 243 year: 2022 ident: 10.1016/j.compositesb.2023.110550_bib33 article-title: Accelerated bone defect regeneration through sequential activation of the M1 and M2 phenotypes of macrophages by a composite BMP-2@SIS hydrogel: an immunomodulatory perspective publication-title: Compos B Eng doi: 10.1016/j.compositesb.2022.110149 – volume: 72 start-page: 138 year: 2015 ident: 10.1016/j.compositesb.2023.110550_bib59 article-title: Controlled dual delivery of fibroblast growth factor-2 and Interleukin-10 by heparin-based coacervate synergistically enhances ischemic heart repair publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.08.050 – volume: 18 start-page: 1698 issue: 8 year: 2017 ident: 10.1016/j.compositesb.2023.110550_bib73 article-title: Scar prevention and enhanced wound healing induced by polydeoxyribonucleotide in a rat incisional wound-healing model publication-title: Int J Mol Sci doi: 10.3390/ijms18081698 – volume: 236 start-page: 109 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib45 article-title: Macrophage polarization and diabetic wound healing publication-title: Transl Res doi: 10.1016/j.trsl.2021.05.006 – volume: 118 start-page: 3787 issue: 10 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib3 article-title: Mechano-regulation of vascular network formation without branches in 3D bioprinted cell-laden hydrogel constructs publication-title: Biotechnol Bioeng doi: 10.1002/bit.27854 – volume: 184 start-page: 3964 issue: 7 year: 2010 ident: 10.1016/j.compositesb.2023.110550_bib14 article-title: Differential roles of macrophages in diverse phases of skin repair publication-title: J Immunol doi: 10.4049/jimmunol.0903356 – volume: 5 start-page: 1858 issue: 9 year: 2017 ident: 10.1016/j.compositesb.2023.110550_bib57 article-title: Fibroblast fate regulation by time dependent TGF-β1 and IL-10 stimulation in biomimetic 3D matrices publication-title: Biomater Sci doi: 10.1039/C7BM00286F – volume: 9 start-page: 3136 issue: 8 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib63 article-title: Localized temporal co-delivery of interleukin 10 and decorin genes using amediated by collagen-based biphasic scaffold modulates the expression of TGF-β1/β2 in a rabbit ear hypertrophic scarring model publication-title: Biomater Sci doi: 10.1039/D0BM01928C – volume: 22 start-page: 950 issue: 2 year: 2021 ident: 10.1016/j.compositesb.2023.110550_bib15 article-title: Macrophages in healing wounds: paradoxes and paradigms publication-title: Int J Mol Sci doi: 10.3390/ijms22020950 – volume: 29 start-page: 135 year: 2016 ident: 10.1016/j.compositesb.2023.110550_bib10 article-title: Preparation and characterization of pro-angiogenic gel derived from small intestinal submucosa publication-title: Acta Biomater doi: 10.1016/j.actbio.2015.10.013 |
SSID | ssj0004532 |
Score | 2.5126042 |
Snippet | Small intestinal submucosa (SIS) hydrogel is a potential candidate for wound dressing since its excellent biocompatibility and bioactivities. However, the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110550 |
SubjectTerms | Interleukin-10 Skin defect Small intestinal submucosa Tannic acid |
Title | Acceleration of wound healing by composite small intestinal submucosa hydrogels through immunomodulation |
URI | https://dx.doi.org/10.1016/j.compositesb.2023.110550 |
Volume | 254 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB76ANGD-MT6KCt4Tdu8Ngl4KcVSFXvRQm9hN9lopW1KW5Fe_O3ONJsaQVDwmMeEZWZ351vyzTcAV0QLipXwDGknseFI08El5XlGYvHAc50o8VpUjfzQ572Bczd0hyXo5LUwRKvUe3-2p693a32nqb3ZnI1GzUeTxOdsTn-K1qokZahamO39ClTbt_e9fkE0fN2njN43yGALLr9oXsTcJnqUWsgGtRInXrxLVfg_palC6unuwa7GjKydDWsfSmp6ADsFJcFDeGlHESaQLJwsTdg7tUtiBAPxOZMrthkBW0zEeMxIJwKXN314gTmRiOuCvaziefqM42C6fw8bUf1IOklj3ebrCAbdm6dOz9BNFIzItsyl4di-HyWR9BE6BKbjSkRwQinpCzqKIAASrYCUzT0eI3RVeL4QXLTMhAeYuqXy7GOoTNOpOgEW25wjwhDCFb6jLE-2Yun4GFNOmvyBqIGf-yyMtMI4NboYhzmV7DUsuDskd4eZu2tgbUxnmczGX4yu88CE3-ZMiOngd_PT_5mfwTZdZSyec6gs52_qAgHKUtah3Pgw63oafgLMR-lH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba8IwFD44B7s8jF2Zu2aw107bpmkLexGZ6Ly8TMG3krTpdKgVdQz__XJs6joYbLDXpqeEk8v5Qr98H8A90oIiyV1D2HFkUGFStaRc14gt5rsODWO3greRO13W6NPngTMoQC27C4O0Sr33p3v6erfWT8o6m-XZaFR-MVF8zmb4p2itSrIF2xRNrYuwXW22Gt2caPjapwzfNzBgB-6-aF7I3EZ6lFyIB7QSR168g7fwfypTudJTP4QDjRlJNe3WERTk9Bj2c0qCJzCshqEqIOlwkiQmH2iXRBAGqnYiVmTTA7KY8PGYoE6EWt744YWqiUhc52S4iubJq-oH0f49ZIT3R5JJEmmbr1Po1596tYahTRSM0LbMpUFtzwvjUHgKOvgmdYRCcFxK4XE8iigAxCs-Kpu7LFLQVarzBWe8YsbMV6VbSNc-g-I0mcpzIJHNmEIYnDvco9JyRSUS1FNjylCT3-cl8LKcBaFWGEeji3GQUcnegly6A0x3kKa7BNYmdJbKbPwl6DEbmODbnAlUOfg9_OJ_4bew2-h12kG72W1dwh62pIyeKygu5-_yWoGVpbjRk_ETTc3rLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acceleration+of+wound+healing+by+composite+small+intestinal+submucosa+hydrogels+through+immunomodulation&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Zhang%2C+Qing-Yi&rft.au=Tan%2C+Jie&rft.au=Nie%2C+Rong&rft.au=Song%2C+Yu-Ting&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=1359-8368&rft.eissn=1879-1069&rft.volume=254&rft_id=info:doi/10.1016%2Fj.compositesb.2023.110550&rft.externalDocID=S1359836823000537 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon |