Optical chaotic flip-flop operations with multiple triggering under clock synchronization in the VCSEL with polarization-preserved optical injection
We investigate the evolution of nonlinear dynamic behaviors of two polarization components (x-PC and y-PC), as well as the interplay of polarization bistability and injection strength in the vertical-cavity surface-emitting laser (VCSEL) with polarization-preserved optical injection. We explore a ne...
        Saved in:
      
    
          | Published in | Optics express Vol. 28; no. 7; p. 10363 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
        
        30.03.2020
     | 
| Online Access | Get full text | 
| ISSN | 1094-4087 1094-4087  | 
| DOI | 10.1364/OE.387277 | 
Cover
| Summary: | We investigate the evolution of nonlinear dynamic behaviors of two polarization components (x-PC and y-PC), as well as the interplay of polarization bistability and injection strength in the vertical-cavity surface-emitting laser (VCSEL) with polarization-preserved optical injection. We explore a new threshold mechanism to judge two logic outputs encoded in different dynamic behaviors of the x-PC and y-PC emitted by the VCSEL with polarization-preserved optical injection. We demonstrate implementations of two parallel optical chaotic reset-set flip-flop operations and two parallel chaotic toggle flip-flop operations that are synchronized by a clock signal and response for as short as 1 ns bit time. We further observe the reconfiguration of these two kinds of flip-flop operations with clock synchronization in different time periods by controlling the duration-time of the reset (toggle) signal with high-level. The probability of the correct trigger responses for these two kinds of flip-flop operations is controlled by the interplay of the duration-time of the reset (toggle) signal and the noise strength of the spontaneous emission. The probability that is equal to 1 for the reset-set flip-flop operations occurs in the long duration-time of the reset (toggle) signal ranging from 480 ps to 592 ps. The probability with 1 for the toggle flip-flop operations takes place in the short duration-time between 116 ps and 170 ps. Moreover, these two kinds of flip-flop operations have strong robust to the spontaneous emission noise. The optical chaotic flip-flop operation device with clock synchronization and reconfigurable trigger function proposed in our scheme offers interesting perspectives for applications where noise is unavoidable and synchronized multiple triggering is required. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
| ISSN: | 1094-4087 1094-4087  | 
| DOI: | 10.1364/OE.387277 |