A Priori Error Analysis of Residual-Free Bubbles for Advection-Diffusion Problems

We develop an a priori error analysis of a finite element approximation to the elliptic advection-diffusion equation -εΔ u + α· ∇ u = f subject to a homogeneous Dirichlet boundary condition, based on the use of residual-free bubble functions. An optimal order error bound is derived in the so-called...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on numerical analysis Vol. 36; no. 6; pp. 1933 - 1948
Main Authors Brezzi, F., Hughes, T. J. R., Marini, L. D., Russo, A., Suli, E.
Format Journal Article
LanguageEnglish
Published Philadelphia, PA Society for Industrial and Applied Mathematics 1999
Subjects
Online AccessGet full text
ISSN0036-1429
1095-7170
DOI10.1137/S0036142998342367

Cover

More Information
Summary:We develop an a priori error analysis of a finite element approximation to the elliptic advection-diffusion equation -εΔ u + α· ∇ u = f subject to a homogeneous Dirichlet boundary condition, based on the use of residual-free bubble functions. An optimal order error bound is derived in the so-called stability-norm (ε|∇ v|2 L2(Ω)+ ∑ hTh T|a·∇ v|2 L2(T))1/2, where hTdenotes the diameter of element T in the subdivision of the computational domain.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1429
1095-7170
DOI:10.1137/S0036142998342367