Deep Learning-Based Feature Matching Algorithm for Multi-Beam and Side-Scan Images
Side-scan sonar and multi-beam echo sounder (MBES) are the most widely used underwater surveying tools in marine mapping today. The MBES offers high accuracy in depth measurement but is limited by low imaging resolution due to beam density constraints. Conversely, side-scan sonar provides high-resol...
        Saved in:
      
    
          | Published in | Remote sensing (Basel, Switzerland) Vol. 17; no. 4; p. 675 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.02.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2072-4292 2072-4292  | 
| DOI | 10.3390/rs17040675 | 
Cover
| Summary: | Side-scan sonar and multi-beam echo sounder (MBES) are the most widely used underwater surveying tools in marine mapping today. The MBES offers high accuracy in depth measurement but is limited by low imaging resolution due to beam density constraints. Conversely, side-scan sonar provides high-resolution backscatter intensity images but lacks precise positional information and often suffers from distortions. Thus, MBES and side-scan images complement each other in depth accuracy and imaging resolution. To obtain high-quality seafloor topography images in practice, matching between MBES and side-scan images is necessary. However, due to the significant differences in content and resolution between MBES depth images and side-scan backscatter images, they represent a typical example of heterogeneous images, making feature matching difficult with traditional image matching methods. To address this issue, this paper proposes a feature matching network based on the LoFTR algorithm, utilizing the intermediate layers of the ResNet-50 network to extract shared features between the two types of images. By leveraging self-attention and cross-attention mechanisms, the features of the MBES and side-scan images are combined, and a similarity matrix of the two modalities is calculated to achieve mutual matching. Experimental results show that, compared to traditional methods, the proposed model exhibits greater robustness to noise interference and effectively reduces noise. It also overcomes challenges, such as large nonlinear differences, significant geometric distortions, and high matching difficulty between the MBES and side-scan images, significantly improving the optimized image matching results. The matching error RMSE has been reduced to within six pixels, enabling the accurate matching of multi-beam and side-scan images. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
| ISSN: | 2072-4292 2072-4292  | 
| DOI: | 10.3390/rs17040675 |