A polygonal finite element formulation for modeling nearly incompressible materials
The objective of the present paper is to develop a finite element formulation for modeling nearly incompressible materials at large strains using polygonal elements. The present finite element formulation is a simplified version of the three-field mixed formulation and, in particular, it reduces the...
Saved in:
Published in | Meccanica (Milan) Vol. 55; no. 4; pp. 701 - 723 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.04.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0025-6455 1572-9648 |
DOI | 10.1007/s11012-019-01121-0 |
Cover
Summary: | The objective of the present paper is to develop a finite element formulation for modeling nearly incompressible materials at large strains using polygonal elements. The present finite element formulation is a simplified version of the three-field mixed formulation and, in particular, it reduces the functional of the internal potential energy by expressing the field of the average volume-change in terms of the displacement field, where the latter is discretized using the Wachspress shape functions. The reduced mixed formulation eliminates the volumetric locking in nearly incompressible materials and enhances the computational efficiency as the static condensation is circumvented. A detailed implementation of the finite element formulation is presented in this study. Also, different example problems, including eigenvalue analysis, nonlinear patch test and other benchmark problems are presented for demonstrating the accuracy and the reliability of the developed formulation for polygonal elements. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0025-6455 1572-9648 |
DOI: | 10.1007/s11012-019-01121-0 |