A Closed-Loop Optogenetic Stimulation Device

Closed-loop optogenetic stimulation devices deliver optical stimulations based on real-time measurement and analysis of neural responses to stimulations. However, the use of large bench-top and tethered devices hinders the naturalistic test environment, which is crucial in pre-clinical neuroscience...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 9; no. 1; p. 96
Main Authors Edward, Epsy S., Kouzani, Abbas Z.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2020
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics9010096

Cover

More Information
Summary:Closed-loop optogenetic stimulation devices deliver optical stimulations based on real-time measurement and analysis of neural responses to stimulations. However, the use of large bench-top and tethered devices hinders the naturalistic test environment, which is crucial in pre-clinical neuroscience studies involving small rodent subjects. This paper presents a tetherless, lightweight and miniaturized head-mountable closed-loop optogenetic stimulation device. The device consists of three hardware modules: a hybrid electrode, an action potential detector, and an optogenetic stimulator. In addition, the device includes three software modules: a feature extractor, a control algorithm, and a pulse generator. The details of the design, implementation, and bench-testing of the device are presented. Furthermore, an in vitro test environment is formed using synthetic neural signals, wherein the device is validated for its closed-loop performance. During the in vitro validation, the device was able to identify abnormal neural signals, and trigger optical stimulation. On the other hand, it was able to also distinguish normal neural signals and inhibit optical stimulation. The overall power consumption of the device is 24 mW. The device measures 6 mm in radius and weighs 0.44 g excluding the power source.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics9010096