Novel best path selection approach based on hybrid improved A algorithm and reinforcement learning
Path planning of intelligent driving vehicles in emergencies is a hot research issue, this paper proposes a new method of the best path selection for the intelligent driving vehicles to solve this problem. Based on the prior knowledge applied reinforcement learning strategy and the searching- optimi...
Saved in:
| Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 51; no. 12; pp. 9015 - 9029 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.12.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-669X 1573-7497 |
| DOI | 10.1007/s10489-021-02303-8 |
Cover
| Summary: | Path planning of intelligent driving vehicles in emergencies is a hot research issue, this paper proposes a new method of the best path selection for the intelligent driving vehicles to solve this problem. Based on the prior knowledge applied reinforcement learning strategy and the searching- optimized A* algorithm, we designed a hybrid algorithm to help intelligent driving vehicles selecting the best path in the traffic network in emergencies including limited height, width, weight, accident, and traffic jam. Through simulation experiments and scene experiments, it is proved that the proposed algorithm has good stability, high efficiency, and practicability. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0924-669X 1573-7497 |
| DOI: | 10.1007/s10489-021-02303-8 |