A 2.8–10-GHz CMOS Current Reuse Cascaded Linearity Improving Ultra-Wideband Low-Noise Amplifier
This study presents a wideband low-noise amplifier (LNA) chip that covers the frequency range of 2.8–10 GHz using UMC’s 0.18 μm complementary metal–oxide–semiconductor technology. The LNA adopts a current reuse architecture to reduce power consumption. This study improves linearity using multiple ga...
Saved in:
Published in | Circuits, systems, and signal processing Vol. 42; no. 9; pp. 5091 - 5107 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0278-081X 1531-5878 |
DOI | 10.1007/s00034-023-02355-w |
Cover
Summary: | This study presents a wideband low-noise amplifier (LNA) chip that covers the frequency range of 2.8–10 GHz using UMC’s 0.18 μm complementary metal–oxide–semiconductor technology. The LNA adopts a current reuse architecture to reduce power consumption. This study improves linearity using multiple gated transistors and inductance degeneration techniques. In addition to enhancing linearity, the proposed technique also achieves high gain and broadband. The DC power dissipation of this LNA was 18 mW with a 1.5 V supply voltage. The measured minimum noise figure was 4.5 dB. Furthermore, the gain, input third-order intercept point, and total chip size of the LNA were 10.8–13.8 dB, 2 dBm, and 1.18 × 1.19 mm
2
, respectively. The proposed LNA measurements exhibit high linearity, high gain, an optimal reflection coefficient, and a low supply voltage. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0278-081X 1531-5878 |
DOI: | 10.1007/s00034-023-02355-w |