An improved QPSO algorithm and its application in fuzzy portfolio model with constraints

Aiming at the shortcomings of quantum-behaved particle swarm optimization algorithm (QPSO), an improved quantum-behaved particle swarm optimization algorithm (IQPSO) is put forward, and the improved algorithm is applied in solving a kind of fuzzy portfolio selection problems. Firstly, a kind of port...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 25; no. 12; pp. 7695 - 7706
Main Authors He, Guang, Lu, Xiao-li
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-021-05688-3

Cover

More Information
Summary:Aiming at the shortcomings of quantum-behaved particle swarm optimization algorithm (QPSO), an improved quantum-behaved particle swarm optimization algorithm (IQPSO) is put forward, and the improved algorithm is applied in solving a kind of fuzzy portfolio selection problems. Firstly, a kind of portfolio models with fuzzy return rates and background risk is established followed by some necessary preparations of fuzzy theory. Then, in the improved algorithm, hybrid probability distribution strategy and contraction–expansion coefficient with nonlinear structure are chosen to enhance particle’s exploration ability, and premature prevention mechanism is used to maintain population diversity. Furthermore, the experimental results on 16 benchmark functions show that IQPSO has better convergence and robustness than PSO with inertia weight, QPSO and QPSO with a hybrid probability distribution in most cases. Finally, when solving a fuzzy portfolio model, IQPSO provides comparable and superior results compared with the other metaheuristics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-021-05688-3