Fault detection in satellite power system using convolutional neural network

Satellite failures account for heavy, irreparable damages, especially when associated with the Power System which is the heart of a satellite. Anomalies in Satellite Power System (SPS) can lead to complete failure of the mission. This demands the need to understand the causes of power system related...

Full description

Saved in:
Bibliographic Details
Published inTelecommunication systems Vol. 76; no. 4; pp. 505 - 511
Main Authors Ganesan, M, Lavanya, R, Nirmala Devi, M
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1018-4864
1572-9451
DOI10.1007/s11235-020-00722-5

Cover

More Information
Summary:Satellite failures account for heavy, irreparable damages, especially when associated with the Power System which is the heart of a satellite. Anomalies in Satellite Power System (SPS) can lead to complete failure of the mission. This demands the need to understand the causes of power system related failures. Huge number of sensors installed in a satellite system conveys information regarding the health of the system. The conventional manual level checking of sensors can be augmented with data driven fault diagnosis approach to reduce the false alarm and burden on operating personnel. The latter has the advantage of exploiting the interrelationship between sensor measurements for fault diagnosis. In this work, Convolutional Neural Network (CNN) is trained on satellite telemetry data for sensor fault detection in SPS. Various processing schemes in time and frequency domains were explored to process the input data to CNN. Promising results were obtained with combination of Stockwell transform (S-transform) and CNN for data processing and classification, respectively. Advanced Diagnostics and Prognostics Testbed (ADAPT), a publicly-available dataset was analysed and used for validating the proposed algorithm, yielding an accuracy as high as 96.7%, precisison of 0.9, F1 score of 0.95 and AUC equal to 0.976.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1018-4864
1572-9451
DOI:10.1007/s11235-020-00722-5