Structured light
All light has structure, but only recently has it been possible to control it in all its degrees of freedom and dimensions, fuelling fundamental advances and applications alike. Here we review the recent advances in ‘pushing the limits’ with structured light, from traditional two-dimensional transve...
Saved in:
Published in | Nature photonics Vol. 15; no. 4; pp. 253 - 262 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1749-4885 1749-4893 |
DOI | 10.1038/s41566-021-00780-4 |
Cover
Summary: | All light has structure, but only recently has it been possible to control it in all its degrees of freedom and dimensions, fuelling fundamental advances and applications alike. Here we review the recent advances in ‘pushing the limits’ with structured light, from traditional two-dimensional transverse fields towards four-dimensional spatiotemporal structured light and multidimensional quantum states, beyond orbital angular momentum towards control of all degrees of freedom, and beyond a linear toolkit to include nonlinear interactions, particularly for high-harmonic structured light. Using a simple interference argument, centuries old, we weave a story that highlights the common nature of seemingly diverse structures, presenting a modern viewpoint on the classes of structured light, and outline the possible future trends and open challenges.
Recent effort in controlling the structure of light in all its degrees of freedom and dimensions has pushed the limits of structured light and broadened its potential beyond orbital angular momentum, two-dimensional fields, qubits and biphotons, and linear optical manipulation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/s41566-021-00780-4 |