Convergence rates for an inertial algorithm of gradient type associated to a smooth non-convex minimization
We investigate an inertial algorithm of gradient type in connection with the minimization of a non-convex differentiable function. The algorithm is formulated in the spirit of Nesterov’s accelerated convex gradient method. We prove some abstract convergence results which applied to our numerical sch...
Saved in:
| Published in | Mathematical programming Vol. 190; no. 1-2; pp. 285 - 329 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0025-5610 1436-4646 |
| DOI | 10.1007/s10107-020-01534-w |
Cover
| Summary: | We investigate an inertial algorithm of gradient type in connection with the minimization of a non-convex differentiable function. The algorithm is formulated in the spirit of Nesterov’s accelerated convex gradient method. We prove some abstract convergence results which applied to our numerical scheme allow us to show that the generated sequences converge to a critical point of the objective function, provided a regularization of the objective function satisfies the Kurdyka–Łojasiewicz property. Further, we obtain convergence rates for the generated sequences and the objective function values formulated in terms of the Łojasiewicz exponent of a regularization of the objective function. Finally, some numerical experiments are presented in order to compare our numerical scheme and some algorithms well known in the literature. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-020-01534-w |