Analytical theory of the spin-orbit state of a binary asteroid deflected by a kinetic impactor
We study the perturbed-from-synchronous librational state of a double asteroid, modeled by the Full Two Rigid Body Problem (F2RBP), with primary emphasis on deriving analytical formulas which describe the system’s evolution after deflection by a kinetic impactor. To this end, both linear and nonline...
Saved in:
Published in | Celestial mechanics and dynamical astronomy Vol. 136; no. 4; p. 32 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.08.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0923-2958 1572-9478 |
DOI | 10.1007/s10569-024-10204-4 |
Cover
Summary: | We study the perturbed-from-synchronous librational state of a double asteroid, modeled by the Full Two Rigid Body Problem (F2RBP), with primary emphasis on deriving analytical formulas which describe the system’s evolution after deflection by a kinetic impactor. To this end, both linear and nonlinear (canonical) theories are developed. We make the simplifying approximations (to be relaxed in a forthcoming paper) of planar binary orbit and axisymmetric shape of the primary body. To study the effect of a DART-like hit on the secondary body, the momentum transfer enhancement parameter
β
is introduced and retained as a symbolic variable throughout all formulas derived, either by linear or nonlinear theory. Our approach can be of use in the context of the analysis of the post-impact data from kinetic impactor missions, by providing a precise modeling of the impactor’s effect on the seconadry’s librational state as a function of
β
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0923-2958 1572-9478 |
DOI: | 10.1007/s10569-024-10204-4 |