Multiple solutions with sign information for superlinear (p, q)-equations

We consider a nonlinear Dirichlet problem driven by the ( p ,  q )-Laplacian and with a Carathéodory reaction f ( z ,  x ) which is ( p - 1 )-superlinear in x ∈ R but without satisfying the Ambrosetti–Rabinowitz condition. Using variational tools and critical groups, we prove a multiplicity theorem...

Full description

Saved in:
Bibliographic Details
Published inPositivity : an international journal devoted to the theory and applications of positivity in analysis Vol. 25; no. 5; pp. 1805 - 1820
Main Authors Liu, Zhenhai, Papageorgiou, Nikolaos S.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.11.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1385-1292
1572-9281
DOI10.1007/s11117-021-00839-0

Cover

More Information
Summary:We consider a nonlinear Dirichlet problem driven by the ( p ,  q )-Laplacian and with a Carathéodory reaction f ( z ,  x ) which is ( p - 1 )-superlinear in x ∈ R but without satisfying the Ambrosetti–Rabinowitz condition. Using variational tools and critical groups, we prove a multiplicity theorem producing three nontrivial smooth solutions all with sign information (one positive, one negative and one nodal).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1385-1292
1572-9281
DOI:10.1007/s11117-021-00839-0