The Extended Feature LMS Algorithm: Exploiting Hidden Sparsity for Systems with Unknown Spectrum

The feature least-mean-square (F-LMS) algorithm has already been introduced to exploit hidden sparsity in lowpass and highpass systems. In this paper, by proposing the extended F-LMS (EF-LMS) algorithm, we boosted the F-LMS algorithm to exploit hidden sparsity in more general systems, those which ar...

Full description

Saved in:
Bibliographic Details
Published inCircuits, systems, and signal processing Vol. 40; no. 1; pp. 174 - 192
Main Authors Yazdanpanah, Hamed, Apolinário, José A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0278-081X
1531-5878
DOI10.1007/s00034-020-01461-3

Cover

Abstract The feature least-mean-square (F-LMS) algorithm has already been introduced to exploit hidden sparsity in lowpass and highpass systems. In this paper, by proposing the extended F-LMS (EF-LMS) algorithm, we boosted the F-LMS algorithm to exploit hidden sparsity in more general systems, those which are neither lowpass nor highpass. To this end, by means of the so-called feature matrix, we reveal the hidden sparsity in coefficients and utilize the l 1 -norm to exploit the exposed sparsity. As a result, the EF-LMS algorithm will improve the convergence rate and the steady-state mean-squared error (MSE) as compared to the traditional least-mean-square algorithm. Moreover, in this work, we analyze the convergence behavior of the coefficient vector and the steady-state MSE performance of the EF-LMS algorithm. Through synthetic and real-world experiments, it has been seen that the EF-LMS algorithm can improve the convergence rate and the steady-state MSE whenever the hidden sparsity is revealed.
AbstractList The feature least-mean-square (F-LMS) algorithm has already been introduced to exploit hidden sparsity in lowpass and highpass systems. In this paper, by proposing the extended F-LMS (EF-LMS) algorithm, we boosted the F-LMS algorithm to exploit hidden sparsity in more general systems, those which are neither lowpass nor highpass. To this end, by means of the so-called feature matrix, we reveal the hidden sparsity in coefficients and utilize the l1-norm to exploit the exposed sparsity. As a result, the EF-LMS algorithm will improve the convergence rate and the steady-state mean-squared error (MSE) as compared to the traditional least-mean-square algorithm. Moreover, in this work, we analyze the convergence behavior of the coefficient vector and the steady-state MSE performance of the EF-LMS algorithm. Through synthetic and real-world experiments, it has been seen that the EF-LMS algorithm can improve the convergence rate and the steady-state MSE whenever the hidden sparsity is revealed.
The feature least-mean-square (F-LMS) algorithm has already been introduced to exploit hidden sparsity in lowpass and highpass systems. In this paper, by proposing the extended F-LMS (EF-LMS) algorithm, we boosted the F-LMS algorithm to exploit hidden sparsity in more general systems, those which are neither lowpass nor highpass. To this end, by means of the so-called feature matrix, we reveal the hidden sparsity in coefficients and utilize the l 1 -norm to exploit the exposed sparsity. As a result, the EF-LMS algorithm will improve the convergence rate and the steady-state mean-squared error (MSE) as compared to the traditional least-mean-square algorithm. Moreover, in this work, we analyze the convergence behavior of the coefficient vector and the steady-state MSE performance of the EF-LMS algorithm. Through synthetic and real-world experiments, it has been seen that the EF-LMS algorithm can improve the convergence rate and the steady-state MSE whenever the hidden sparsity is revealed.
Author Apolinário, José A.
Yazdanpanah, Hamed
Author_xml – sequence: 1
  givenname: Hamed
  orcidid: 0000-0002-7108-7866
  surname: Yazdanpanah
  fullname: Yazdanpanah, Hamed
  email: hamed.yazdanpanah@smt.ufrj.br
  organization: Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo
– sequence: 2
  givenname: José A.
  orcidid: 0000-0003-1426-9636
  surname: Apolinário
  fullname: Apolinário, José A.
  organization: Programs of Defense and Electrical Engineering, Military Institute of Engineering (IME)
BookMark eNp9kE1LAzEQhoMo2Kp_wFPA82q-djfxJlKtUPHQFrzFdHe2RtukJim1_95oBcFDT3OY53lnePvo0HkHCJ1TckkJqa8iIYSLgjBSECoqWvAD1KMlp0Upa3mIeoTVsiCSPh-jfoxvhFAlFOuhl8kr4MFnAtdCi-_ApHUAPHoc45vF3AebXpfXeb9aeJusm-OhbVtweLwyIdq0xZ0PeLyNCZYRbzKNp-7d-c03AU0K6-UpOurMIsLZ7zxB07vB5HZYjJ7uH25vRkXDqUoFze9XFamomHWiVbIDIXndNqwsSyFL2SjRUpgB42CUqmtaKcoV7YwxrShLxk_QxS53FfzHGmLSb34dXD6pmahzlmRSZUruqCb4GAN0urHJJOtdCsYuNCX6u0-961PnPvVPn5pnlf1TV8EuTdjul_hOihl2cwh_X-2xvgBkhokw
CitedBy_id crossref_primary_10_1002_acs_3528
crossref_primary_10_1016_j_sigpro_2021_108276
Cites_doi 10.1002/9780470374122
10.1016/j.sigpro.2011.04.028
10.1007/978-1-4614-4106-9
10.1007/s00034-015-0132-3
10.1007/s00034-018-0784-x
10.1109/LSP.2003.821732
10.1016/j.sigpro.2014.04.012
10.1140/epjp/i2019-12654-6
10.1016/j.asoc.2019.105705
10.1109/LSP.2009.2024736
10.1007/s00034-018-0870-0
10.1007/s00034-015-0059-8
10.1140/epjp/i2019-12785-8
10.1109/TSP.2014.2334560
10.1007/s00034-015-0040-6
10.1016/j.asoc.2019.03.052
10.1109/78.611195
10.1007/s00034-016-0324-5
10.1016/j.apm.2018.09.028
10.1007/s00034-015-0178-2
10.1109/TSP.2012.2236831
10.1109/GlobalSIP.2018.8646465
10.1109/ICASSP.2002.5744994
10.1109/TSMC.2018.2795340
10.1109/ICASSP.2018.8461674
10.1155/2007/34242
10.1109/SSRR.2007.4381270
10.23919/EUSIPCO.2019.8902960
10.1109/TCSII.2016.2555942
10.1109/ICASSP.2017.7952883
10.21227/nzgr-ds72
10.1049/ic.2011.0144
10.1109/EUSIPCO.2016.7760558
10.23919/EUSIPCO.2019.8902747
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7SP
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
S0W
DOI 10.1007/s00034-020-01461-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1531-5878
EndPage 192
ExternalDocumentID 10_1007_s00034_020_01461_3
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29B
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
88I
8AO
8FE
8FG
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-1034660614bf4d98fe4837dc25554858c94d1ebe23ea99771691391faaad45523
IEDL.DBID U2A
ISSN 0278-081X
IngestDate Sat Aug 23 14:02:01 EDT 2025
Wed Oct 01 01:31:40 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Fri Feb 21 02:36:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Adaptive filtering
LMS algorithm
Sparsity
Feature
Computational complexity
norm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1034660614bf4d98fe4837dc25554858c94d1ebe23ea99771691391faaad45523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7108-7866
0000-0003-1426-9636
PQID 2478378289
PQPubID 30136
PageCount 19
ParticipantIDs proquest_journals_2478378289
crossref_citationtrail_10_1007_s00034_020_01461_3
crossref_primary_10_1007_s00034_020_01461_3
springer_journals_10_1007_s00034_020_01461_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Cambridge
PublicationSubtitle CSSP
PublicationTitle Circuits, systems, and signal processing
PublicationTitleAbbrev Circuits Syst Signal Process
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chaudhary, Zubair, Aslam (CR4) 2019; 134
Diniz (CR8) 2013
Farhang-Boroujeny (CR11) 1997; 45
Raja, Akhtar, Chaudhary (CR26) 2019; 134
Mandal, Mishra (CR19) 2017; 36
Murali, Chitra, Manigandan, Sharanya (CR23) 2016; 35
CR16
CR15
CR36
CR35
CR34
CR33
CR10
CR31
Yu, Zhao, Chen (CR37) 2015; 34
Padhi, Chandra, Kar, Swamy (CR24) 2018; 37
Mehmood, Zameer, Chaudhary (CR21) 2019; 84
Shi, Shi (CR29) 2011; 91
CR2
Bhotto, Antoniou (CR3) 2013; 61
Chaudhary, Zubair, Raja (CR5) 2019; 66
CR6
CR7
Widrow, Hoff (CR32) 1960; 4
CR9
Gu, Jin, Mei (CR12) 2009; 16
CR27
Lima, Ferreira, Martins, Diniz (CR18) 2014; 62
Haykin (CR13) 2002
Zhang, Wang (CR38) 2017; 66
Aslam, Raja (CR1) 2015; 107
CR22
Pu, Zhang, Min (CR25) 2016; 35
He, Lin (CR14) 2019; 38
Mehmood, Chaudhary, Zameer (CR20) 2019; 80
Li, Zhang, Wang (CR17) 2016; 35
Tarighat, Sayed (CR30) 2004; 11
Sayed (CR28) 2008
Y Gu (1461_CR12) 2009; 16
MVS Lima (1461_CR18) 2014; 62
MS Aslam (1461_CR1) 2015; 107
NI Chaudhary (1461_CR4) 2019; 134
S He (1461_CR14) 2019; 38
1461_CR15
A Mehmood (1461_CR21) 2019; 84
1461_CR16
A Tarighat (1461_CR30) 2004; 11
1461_CR35
1461_CR36
1461_CR33
1461_CR34
1461_CR31
1461_CR10
NI Chaudhary (1461_CR5) 2019; 66
Y Li (1461_CR17) 2016; 35
1461_CR2
1461_CR6
MAZ Raja (1461_CR26) 2019; 134
1461_CR7
T Padhi (1461_CR24) 2018; 37
B Farhang-Boroujeny (1461_CR11) 1997; 45
A Mehmood (1461_CR20) 2019; 80
1461_CR9
1461_CR27
L Murali (1461_CR23) 2016; 35
A Mandal (1461_CR19) 2017; 36
1461_CR22
K Shi (1461_CR29) 2011; 91
PSR Diniz (1461_CR8) 2013
K Pu (1461_CR25) 2016; 35
AH Sayed (1461_CR28) 2008
S Haykin (1461_CR13) 2002
B Widrow (1461_CR32) 1960; 4
Y Yu (1461_CR37) 2015; 34
H Zhang (1461_CR38) 2017; 66
ZA Bhotto (1461_CR3) 2013; 61
References_xml – ident: CR22
– year: 2008
  ident: CR28
  publication-title: Adaptive Filters
  doi: 10.1002/9780470374122
– volume: 91
  start-page: 2432
  year: 2011
  end-page: 2436
  ident: CR29
  article-title: Adaptive sparse Volterra system identification with -norm penalty
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2011.04.028
– year: 2013
  ident: CR8
  publication-title: Adaptive Filtering: Algorithms and Practical Implementation
  doi: 10.1007/978-1-4614-4106-9
– ident: CR2
– ident: CR16
– volume: 35
  start-page: 1611
  year: 2016
  end-page: 1624
  ident: CR17
  article-title: Low-complexity non-uniform penalized affine projection algorithm for sparse system identification
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-015-0132-3
– volume: 66
  start-page: 3685
  year: 2017
  end-page: 3702
  ident: CR38
  article-title: Active steering actuator fault detection for an automatically-steered electric ground vehicle
  publication-title: IEEE Trans. Veh. Technol.
– ident: CR10
– volume: 37
  start-page: 3275
  year: 2018
  end-page: 3294
  ident: CR24
  article-title: A new hybrid active noise control system with convex combination of time and frequency domain filtered-x LMS algorithms
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-018-0784-x
– volume: 11
  start-page: 220
  year: 2004
  end-page: 223
  ident: CR30
  article-title: Least mean-phase adaptive filters with application to communications systems
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2003.821732
– ident: CR33
– ident: CR35
– ident: CR6
– volume: 107
  start-page: 433
  year: 2015
  end-page: 443
  ident: CR1
  article-title: A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional signal processing approach
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.04.012
– volume: 134
  start-page: 275
  year: 2019
  ident: CR26
  article-title: A new computing paradigm for the optimization of parameters in adaptive beamforming using fractional processing
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2019-12654-6
– ident: CR27
– volume: 4
  start-page: 96
  year: 1960
  end-page: 104
  ident: CR32
  article-title: Adaptive switching circuits
  publication-title: IRE WESCOM Conv. Rec.
– volume: 84
  start-page: 105705
  year: 2019
  ident: CR21
  article-title: Backtracking search heuristics for identification of electrical muscle stimulation models using Hammerstein structure
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105705
– volume: 16
  start-page: 774
  year: 2009
  end-page: 777
  ident: CR12
  article-title: norm constraint LMS algorithm for sparse system identification
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2009.2024736
– ident: CR15
– volume: 38
  start-page: 470
  year: 2019
  end-page: 480
  ident: CR14
  article-title: Cauchy distribution function-penalized LMS for sparse system identification
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-018-0870-0
– volume: 35
  start-page: 669
  year: 2016
  end-page: 684
  ident: CR25
  article-title: A signal decorrelation PNLMS algorithm for double-talk acoustic echo cancellation
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-015-0059-8
– ident: CR31
– volume: 134
  start-page: 407
  year: 2019
  ident: CR4
  article-title: Design of momentum fractional LMS for Hammerstein nonlinear system identification with application to electrically stimulated muscle model
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2019-12785-8
– ident: CR9
– volume: 62
  start-page: 4557
  year: 2014
  end-page: 4572
  ident: CR18
  article-title: Sparsity-aware data-selective adaptive filters
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2334560
– year: 2002
  ident: CR13
  publication-title: Adaptive Filter Theory
– volume: 34
  start-page: 3933
  year: 2015
  end-page: 3948
  ident: CR37
  article-title: Sparseness-controlled proportionate affine projection sign algorithms for acoustic echo cancellation
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-015-0040-6
– volume: 80
  start-page: 263
  year: 2019
  end-page: 284
  ident: CR20
  article-title: Novel computing paradigms for parameter estimation in Hammerstein controlled auto regressive auto regressive moving average systems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.03.052
– ident: CR34
– ident: CR36
– volume: 45
  start-page: 1987
  year: 1997
  end-page: 2000
  ident: CR11
  article-title: Fast LMS/Newton algorithms based on autoregressive modeling and their application to acoustic echo cancellation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.611195
– ident: CR7
– volume: 36
  start-page: 675
  year: 2017
  end-page: 702
  ident: CR19
  article-title: Digital equalization for cancellation of noise-like interferences in adaptive spatial filtering
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-016-0324-5
– volume: 66
  start-page: 457
  year: 2019
  end-page: 471
  ident: CR5
  article-title: Normalized fractional adaptive methods for nonlinear control autoregressive systems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.09.028
– volume: 35
  start-page: 2914
  year: 2016
  end-page: 2931
  ident: CR23
  article-title: An efficient adaptive filter architecture for improving the seizure detection in EEG signal
  publication-title: Circuits Syst Signal Process
  doi: 10.1007/s00034-015-0178-2
– volume: 61
  start-page: 1689
  year: 2013
  end-page: 1697
  ident: CR3
  article-title: A family of shrinkage adaptive-filtering algorithms
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2236831
– ident: 1461_CR33
  doi: 10.1109/GlobalSIP.2018.8646465
– volume: 80
  start-page: 263
  year: 2019
  ident: 1461_CR20
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.03.052
– ident: 1461_CR2
  doi: 10.1109/ICASSP.2002.5744994
– ident: 1461_CR16
  doi: 10.1109/TSMC.2018.2795340
– ident: 1461_CR9
  doi: 10.1109/ICASSP.2018.8461674
– volume: 84
  start-page: 105705
  year: 2019
  ident: 1461_CR21
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105705
– ident: 1461_CR31
  doi: 10.1155/2007/34242
– ident: 1461_CR27
  doi: 10.1109/SSRR.2007.4381270
– volume: 134
  start-page: 407
  year: 2019
  ident: 1461_CR4
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2019-12785-8
– volume: 35
  start-page: 2914
  year: 2016
  ident: 1461_CR23
  publication-title: Circuits Syst Signal Process
  doi: 10.1007/s00034-015-0178-2
– volume: 107
  start-page: 433
  year: 2015
  ident: 1461_CR1
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.04.012
– volume: 91
  start-page: 2432
  year: 2011
  ident: 1461_CR29
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2011.04.028
– volume: 35
  start-page: 1611
  year: 2016
  ident: 1461_CR17
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-015-0132-3
– ident: 1461_CR7
– volume-title: Adaptive Filter Theory
  year: 2002
  ident: 1461_CR13
– volume-title: Adaptive Filtering: Algorithms and Practical Implementation
  year: 2013
  ident: 1461_CR8
  doi: 10.1007/978-1-4614-4106-9
– ident: 1461_CR6
  doi: 10.23919/EUSIPCO.2019.8902960
– volume: 45
  start-page: 1987
  year: 1997
  ident: 1461_CR11
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.611195
– volume: 66
  start-page: 457
  year: 2019
  ident: 1461_CR5
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.09.028
– volume: 35
  start-page: 669
  year: 2016
  ident: 1461_CR25
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-015-0059-8
– volume: 134
  start-page: 275
  year: 2019
  ident: 1461_CR26
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2019-12654-6
– volume: 61
  start-page: 1689
  year: 2013
  ident: 1461_CR3
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2236831
– ident: 1461_CR34
  doi: 10.1109/TCSII.2016.2555942
– volume: 16
  start-page: 774
  year: 2009
  ident: 1461_CR12
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2009.2024736
– volume: 34
  start-page: 3933
  year: 2015
  ident: 1461_CR37
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-015-0040-6
– volume: 36
  start-page: 675
  year: 2017
  ident: 1461_CR19
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-016-0324-5
– volume: 11
  start-page: 220
  year: 2004
  ident: 1461_CR30
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2003.821732
– volume: 62
  start-page: 4557
  year: 2014
  ident: 1461_CR18
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2334560
– volume: 66
  start-page: 3685
  year: 2017
  ident: 1461_CR38
  publication-title: IEEE Trans. Veh. Technol.
– ident: 1461_CR35
  doi: 10.1109/ICASSP.2017.7952883
– volume-title: Adaptive Filters
  year: 2008
  ident: 1461_CR28
  doi: 10.1002/9780470374122
– volume: 37
  start-page: 3275
  year: 2018
  ident: 1461_CR24
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-018-0784-x
– volume: 38
  start-page: 470
  year: 2019
  ident: 1461_CR14
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-018-0870-0
– ident: 1461_CR15
  doi: 10.21227/nzgr-ds72
– ident: 1461_CR22
  doi: 10.1049/ic.2011.0144
– volume: 4
  start-page: 96
  year: 1960
  ident: 1461_CR32
  publication-title: IRE WESCOM Conv. Rec.
– ident: 1461_CR36
  doi: 10.1109/EUSIPCO.2016.7760558
– ident: 1461_CR10
  doi: 10.23919/EUSIPCO.2019.8902747
SSID ssj0019492
Score 2.2567158
Snippet The feature least-mean-square (F-LMS) algorithm has already been introduced to exploit hidden sparsity in lowpass and highpass systems. In this paper, by...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 174
SubjectTerms Algorithms
Circuits and Systems
Convergence
Electrical Engineering
Electronics and Microelectronics
Engineering
Instrumentation
Signal,Image and Speech Processing
Sparsity
Steady state
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4gXPRgfEYUTQ_etBH2XRNj0GCIEWJEEm5rd9tVE1hQ4f87U7qgJnLebpPO9PHN6xuAU52owFci5QheA-6FieBRpupcqiyMtNKBCqneudMN2n3vfuAPStAtamEorbK4E81FrcYp-cgvHC8k7nO0D64nH5y6RlF0tWihIW1rBXVlKMbWoOIQM1YZKjet7uPTIq4gPNMmmcJtHB_DgS2jMcV0hquFkzlFhCoN7v5-qpb480_I1LxEd1uwaSEka851vg0lne_Axg9iwV14Qe2zlvVvM4J5s0_NHjo91hy-4qqmb6NLZtLv3intmbWJSCRnvYk0ORoMkSyzXOaMPLWsn5PzjUZQ15zZaA_6d63n2za3vRR4iodsiret6wUBmX-UmSeiTBOVvErRokCbxY9S4akGKtRxtRSICYlDxxWNTEqpPB-t1X0o5-NcHwCTGUICkSDuQuiIkyVOndQd6SxNPF85VWgUYotTSzRO_S6G8YIi2Yg6RlHHRtSxW4WzxT-TOc3GytG1QhuxPXJf8XKDVOG80NDy8_-zHa6e7QjWHcpjMW6XGpRRyPoYgcg0ObG76xuVq9hQ
  priority: 102
  providerName: ProQuest
Title The Extended Feature LMS Algorithm: Exploiting Hidden Sparsity for Systems with Unknown Spectrum
URI https://link.springer.com/article/10.1007/s00034-020-01461-3
https://www.proquest.com/docview/2478378289
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: AMVHM
  dateStart: 20110201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1531-5878
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1531-5878
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019492
  issn: 0278-081X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4IXPRgfEYUyR686SbQd71VUyAqxIhN8FTb7lZNoBCB_-_M0hY1auKph273MLPb-eb1DcCZjIVlCjfhCF4tbtixy51UtHgkUtuRQlrCpn7n_sDqBcbNyBzlTWHzotq9SEmqP3XZ7Ka4VDi5O0R40uZ6BWom0XnhKQ40r8wduIYahUwpNY4Gb5S3yvy8x1dztMaY39Kiytp0dmA7h4nMW-l1FzZktgdbn8gD9-EZNcz8PIbNCMot3yW76w-ZN36Zos__OrlkqsTujUqbWY_IQjI2nEWqDoMhWmU5XzmjaCwLMgqw0QqajLOcHEDQ8R-vezyfl8ATvEgL_KPqhmWRi0fVd66TSqKLFwl6DeiXmE7iGqKNStN0GbmI-4gnR3fbaRRFwjDRIz2EajbN5BGwKEWz78aIrRAe4max1iKVOjJNYsMUWh3ahdjCJCcTp5kW47CkQVaiDlHUoRJ1qNfhvPxmtqLS-HN1o9BGmF-reagZNhHgo5NYh4tCQ-vXv-92_L_lJ7CpUe2KCrU0oIpCl6cIPhZxEypOp9uEmtd9uvXxeeUP7h-a6gR-AHXm0n4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB6KHtSD-MT63IOedNEmmzQriPiotPaBqIXeYpLdqFBj1Yr45_xtzmw3rQp685zNQmYnO9-8vgHY1LHyPSUTjuDV56IcSx6kao9HKi0HWmlflanfudnyq21x3vE6BfjIe2GorDK_E81FrR4TipHvOqJM3OfoHxz2njhNjaLsaj5CI7KjFdSBoRizjR11_f6GLtzLQe0Uz3vLcc4q1ydVbqcM8ATVr4_3kCt8nxwjqlmTQaqJZF0liLURzXtBIoUq4ac6ro4koiVil3FlKY2iSAnPI-IDNAHjwhUSnb_x40rr4nKYx5DCjGWm9B5H49uxbTumec9ww3By34jApcTd76ZxhHd_pGiN5TubgWkLWdnRQMdmoaCzOZj6QmQ4Dzeobaxi4-mMYOXrs2aN5hU76t6iFPt3D_vMlPvdU5k1qxJxScauepGpCWGInJnlTmcUGWbtjIJ9tIKm9Lw-LED7X6S6CGPZY6aXgEUpQhAZI85DqIqbxc4eqVeg0yQWnnKKUMrFFiaW2Jzma3TDISWzEXWIog6NqEO3CNvDd3oDWo8_V6_mpxHaX_wlHClkEXbyExo9_n235b9324CJ6nWzETZqrfoKTDpUQ2NCPqswhgLXawiC-vG61TQGN_-t3J8WKhNn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB6kguhBfGJ97kFPurR5J4JIUWO1D4Ra6C1NshsVbFq1Rfxr_jpntkmrgr15zmYhs19mv52d-QbgUEbCtoQXcySvNjedyONuIso8FInjSiFt4VC9c6NpV9vmbcfqzMFnXgtDaZW5T1SOWvRjipGXdNMh7XM8H5SSLC3i7tI_H7xw6iBFN615O40xRGry4x2Pb29nN5e41ke67l_dX1R51mGAxwi9Ifogw7RtOhRRvprnJpIE1kWMPBuZvOXGnik0_EzdkKGHTImUZQxPS8IwFKZlkegBuv95h1TcqUrdv57cYHimashMF3sct91OVrCjyvaUKgyngxtJt2jc-LkpTpnur8tZtef5K7CckVVWGaNrFeZkugZL3yQM16GLOGNXWSSdEaEcvUpWb7RY5fkBbTZ87J0ylej3RAnWrEqSJSlrDUKVDcKQM7NMNZ1RTJi1Uwrz0QjqzzPqbUD7X2y6CYW0n8otYGGC5MOLkOEhScXJIr1MwHJlEkemJfQiaLnZgjiTNKfOGs_BRIxZmTpAUwfK1IFRhOPJO4OxoMfM0bv5agTZz_0WTKFYhJN8haaP_55te_ZsB7CAkA7qN83aDizqlDyjYj27UEB7yz1kP8NoX8GMQfe_cf0Fb2kRAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Extended+Feature+LMS+Algorithm%3A+Exploiting+Hidden+Sparsity+for+Systems+with+Unknown+Spectrum&rft.jtitle=Circuits%2C+systems%2C+and+signal+processing&rft.au=Yazdanpanah%2C+Hamed&rft.au=Apolin%C3%A1rio%2C+Jos%C3%A9+A.&rft.date=2021-01-01&rft.pub=Springer+US&rft.issn=0278-081X&rft.eissn=1531-5878&rft.volume=40&rft.issue=1&rft.spage=174&rft.epage=192&rft_id=info:doi/10.1007%2Fs00034-020-01461-3&rft.externalDocID=10_1007_s00034_020_01461_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-081X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-081X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-081X&client=summon