The Extended Feature LMS Algorithm: Exploiting Hidden Sparsity for Systems with Unknown Spectrum
The feature least-mean-square (F-LMS) algorithm has already been introduced to exploit hidden sparsity in lowpass and highpass systems. In this paper, by proposing the extended F-LMS (EF-LMS) algorithm, we boosted the F-LMS algorithm to exploit hidden sparsity in more general systems, those which ar...
Saved in:
| Published in | Circuits, systems, and signal processing Vol. 40; no. 1; pp. 174 - 192 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.01.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-081X 1531-5878 |
| DOI | 10.1007/s00034-020-01461-3 |
Cover
| Summary: | The feature least-mean-square (F-LMS) algorithm has already been introduced to exploit hidden sparsity in lowpass and highpass systems. In this paper, by proposing the extended F-LMS (EF-LMS) algorithm, we boosted the F-LMS algorithm to exploit hidden sparsity in more general systems, those which are neither lowpass nor highpass. To this end, by means of the so-called feature matrix, we reveal the hidden sparsity in coefficients and utilize the
l
1
-norm to exploit the exposed sparsity. As a result, the EF-LMS algorithm will improve the convergence rate and the steady-state mean-squared error (MSE) as compared to the traditional least-mean-square algorithm. Moreover, in this work, we analyze the convergence behavior of the coefficient vector and the steady-state MSE performance of the EF-LMS algorithm. Through synthetic and real-world experiments, it has been seen that the EF-LMS algorithm can improve the convergence rate and the steady-state MSE whenever the hidden sparsity is revealed. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0278-081X 1531-5878 |
| DOI: | 10.1007/s00034-020-01461-3 |