A Science Gateway for the Repeatable Analysis of Machine Learning Predicted Gravity Anomalies

In recent years, deep learning has become an increasingly popular alternative for modeling in geoscience applications due to its scalability and efficiency. However, the interpretability, compute, data volume, and hyperparameter tuning requirements of deep learning models make development and monito...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 21; pp. 1 - 5
Main Authors Arndt, Jacob, Wohlgemuth, Jason, Lexie Yang, H., Bowman, Jordan, Lunga, Dalton, King, Dawn
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-598X
1558-0571
DOI10.1109/LGRS.2024.3441322

Cover

Abstract In recent years, deep learning has become an increasingly popular alternative for modeling in geoscience applications due to its scalability and efficiency. However, the interpretability, compute, data volume, and hyperparameter tuning requirements of deep learning models make development and monitoring difficult. Furthermore, model explainability and communicating results obtained by these models to users or domain experts is a challenge, as domain experts in geoscience also need to have a deep understanding of how those models function in order to support their scientific works. Here, we describe a science gateway and machine learning pipeline for predicting gravity anomalies from geophysical data. The gateway, built on open-source technologies, provides a holistic view of the pipeline through interactive visualizations aimed at enabling efficient exploratory data analysis. The repeatability, reproducibility, and monitoring capabilities of this overall system allow us to iterate and analyze at scale. Using this pipeline and gateway, we can repeatedly produce accurate high-resolution gravity anomaly datasets. By describing the underlying technologies, implementation, and results, we provide a foundation for the broader adoption of science gateways into cross-cutting geoscience and machine learning research projects as a means to improve the scientific discovery and collaboration in the geophysics and computational sciences community.
AbstractList In recent years, deep learning has become an increasingly popular alternative for modeling in geoscience applications due to its scalability and efficiency. However, the interpretability, compute, data volume, and hyperparameter tuning requirements of deep learning models make development and monitoring difficult. Furthermore, model explainability and communicating results obtained by these models to users or domain experts is a challenge, as domain experts in geoscience also need to have a deep understanding of how those models function in order to support their scientific works. Here, we describe a science gateway and machine learning pipeline for predicting gravity anomalies from geophysical data. The gateway, built on open-source technologies, provides a holistic view of the pipeline through interactive visualizations aimed at enabling efficient exploratory data analysis. The repeatability, reproducibility, and monitoring capabilities of this overall system allow us to iterate and analyze at scale. Using this pipeline and gateway, we can repeatedly produce accurate high-resolution gravity anomaly datasets. By describing the underlying technologies, implementation, and results, we provide a foundation for the broader adoption of science gateways into cross-cutting geoscience and machine learning research projects as a means to improve the scientific discovery and collaboration in the geophysics and computational sciences community.
In recent years, deep learning has become an increasingly popular alternative for modeling in geoscience applications due to its scalability and efficiency. However, the interpretability, compute, data volume, and hyperparameter tuning requirements of deep learning models make development and monitoring difficult. Furthermore, model explainability and communicating results obtained by these models to users or domain experts is a challenge, as domain experts in geoscience also need to have a deep understanding of how those models function in order to support their scientific works. Here, we describe a science gateway and machine learning pipeline for predicting gravity anomalies from geophysical data. The gateway, built on open-source technologies, provides a holistic view of the pipeline through interactive visualizations aimed at enabling efficient exploratory data analysis. The repeatability, reproducibility, and monitoring capabilities of this overall system allow us to iterate and analyze at scale. Using this pipeline and gateway, we can repeatedly produce accurate high-resolution gravity anomaly datasets. By describing the underlying technologies, implementation, and results, here we provide a foundation for the broader adoption of science gateways into cross-cutting geoscience and machine learning research projects as a means to improve the scientific discovery and collaboration in the geophysics and computational sciences community.
Author Bowman, Jordan
Lunga, Dalton
Arndt, Jacob
Lexie Yang, H.
King, Dawn
Wohlgemuth, Jason
Author_xml – sequence: 1
  givenname: Jacob
  orcidid: 0000-0002-1097-0428
  surname: Arndt
  fullname: Arndt, Jacob
  email: arndtjw@ornl.gov
  organization: Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
– sequence: 2
  givenname: Jason
  orcidid: 0000-0002-2057-9115
  surname: Wohlgemuth
  fullname: Wohlgemuth, Jason
  email: wohlgemuthjh@ornl.gov
  organization: Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
– sequence: 3
  givenname: H.
  orcidid: 0000-0003-2252-6778
  surname: Lexie Yang
  fullname: Lexie Yang, H.
  email: yangh@ornl.gov
  organization: Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
– sequence: 4
  givenname: Jordan
  orcidid: 0000-0002-3495-9186
  surname: Bowman
  fullname: Bowman, Jordan
  email: bowmanjm1@ornl.gov
  organization: Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
– sequence: 5
  givenname: Dalton
  orcidid: 0000-0003-0054-1141
  surname: Lunga
  fullname: Lunga, Dalton
  email: lungadd@ornl.gov
  organization: Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
– sequence: 6
  givenname: Dawn
  surname: King
  fullname: King, Dawn
  organization: National Geospatial-Intelligence Agency, St. Louis, MO, USA
BackLink https://www.osti.gov/servlets/purl/2441103$$D View this record in Osti.gov
BookMark eNpNkE1LAzEQhoNUsK3-AMFD0PPWfOznsRStworSKniRkE1nbUqb1CRV-u_Nsh68zDsMzwzMM0IDYw0gdEnJhFJS3dbzxXLCCEsnPE0pZ-wEDWmWlQnJCjro-jRLsqp8P0Mj7zckkmVZDNHHFC-VBqMAz2WAH3nErXU4rAEvYA8yyGYLeGrk9ui1x7bFT1KttQFcg3RGm0_84mClVYAVnjv5rcMx4nYntxr8OTpt5dbDxV-O0dv93evsIamf54-zaZ0oTvOQAMkL0rYNlDGLJpWcEMViIVApuWqaihdtSaEqWMpz2pY5AcZiZHHIC8nH6Lq_a33QwisdQK2VNQZUECwKoYRH6KaH9s5-HcAHsbEHFz_zgpOqqFhUkkeK9pRy1nsHrdg7vZPuKCgRnWrRqRadavGnOu5c9TsaAP7xOWdZzvgv7lx6og
CODEN IGRSBY
Cites_doi 10.1109/JSTARS.2019.2959707
10.1007/s10723-016-9385-8
10.1109/GCE.2010.5676129
10.1109/JSTARS.2021.3119001
10.5194/essd-11-647-2019
10.1016/j.future.2018.12.026
10.1088/1755-1315/509/1/012043
10.1029/2011JB008916
10.5194/essd-13-99-2021
10.1002/cpe.5040
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
CorporateAuthor Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
OIOZB
OTOTI
DOI 10.1109/LGRS.2024.3441322
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 5
ExternalDocumentID 2441103
10_1109_LGRS_2024_3441322
10632562
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
OIOZB
OTOTI
ID FETCH-LOGICAL-c316t-e0670ffbe86707b4a300c23000e9cadbb937f81e9724361f860e22f86581e37a3
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Mon Aug 11 02:20:40 EDT 2025
Mon Jun 30 10:17:45 EDT 2025
Wed Oct 01 04:26:04 EDT 2025
Wed Aug 27 02:03:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-e0670ffbe86707b4a300c23000e9cadbb937f81e9724361f860e22f86581e37a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
None
AC05-00OR22725
ORCID 0000-0003-2252-6778
0000-0003-0054-1141
0000-0002-2057-9115
0000-0002-1097-0428
0000-0002-3495-9186
0000000322526778
0000000234959186
0000000300541141
0000000220579115
0000000210970428
OpenAccessLink https://www.osti.gov/servlets/purl/2441103
PQID 3097922486
PQPubID 75725
PageCount 5
ParticipantIDs osti_scitechconnect_2441103
crossref_primary_10_1109_LGRS_2024_3441322
ieee_primary_10632562
proquest_journals_3097922486
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
– name: United States
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref8
ref7
(ref11) 2023
ref9
ref4
ref3
ref6
ref5
ref10
ref2
ref1
Bierhance (ref12) 2023
References_xml – volume-title: pola-rs/tpch
  year: 2023
  ident: ref11
– ident: ref7
  doi: 10.1109/JSTARS.2019.2959707
– ident: ref1
  doi: 10.1007/s10723-016-9385-8
– ident: ref3
  doi: 10.1109/GCE.2010.5676129
– ident: ref6
  doi: 10.1109/JSTARS.2021.3119001
– ident: ref10
  doi: 10.5194/essd-11-647-2019
– ident: ref2
  doi: 10.1016/j.future.2018.12.026
– ident: ref5
  doi: 10.1088/1755-1315/509/1/012043
– ident: ref8
  doi: 10.1029/2011JB008916
– ident: ref9
  doi: 10.5194/essd-13-99-2021
– volume-title: USPolars—Make the Switch to Lightning-Fast Dataframes
  year: 2023
  ident: ref12
– ident: ref4
  doi: 10.1002/cpe.5040
SSID ssj0024887
Score 2.3805037
Snippet In recent years, deep learning has become an increasingly popular alternative for modeling in geoscience applications due to its scalability and efficiency....
SourceID osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Communication
Convolutional neural networks
Cross cutting
dashboard
Data analysis
Data visualization
Deep learning
Earth science
Feature extraction
geodesy
Geophysical data
Geophysics
GEOSCIENCES
Gravity
Gravity anomalies
Learning algorithms
Libraries
Logic gates
Machine learning
Monitoring
Pipelines
Reproducibility
Research projects
science gateway
Subject specialists
Title A Science Gateway for the Repeatable Analysis of Machine Learning Predicted Gravity Anomalies
URI https://ieeexplore.ieee.org/document/10632562
https://www.proquest.com/docview/3097922486
https://www.osti.gov/servlets/purl/2441103
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEB-sUNoXtWrp-VHy0Cdhz90kt7t5FKknpYpUhXuRsMlNFEpvy7n3oH-9M9kc1UqhT1lCyO5mMpnfTOYD4Av1-lKHInOoZaZJh8ga5XwmfeD03s6XkoOTz87L02v9bTKapGD1GAuDiNH5DIf8GO_yp61fsKmMOLxUJKLpxH1TVaYP1vqTWK-O1fAYEmQjU0_SFWaRm8Pv4x-XpApKPVQk_ZWUL4RQrKpCTUs89epEjmLmZB3Olx_Ye5f8HC46N_SPf-Vu_O8_2IC1BDjFUb9DPsAKzjbhXap9fvewCW_HsbjvwxbcHInE6iIZ1QRBWkEQURBOp0Obw6zEMo2JaIM4i66YKFKW1ltxMeeLH0KxYjxvuCwFDW9_EdbH-224Pvl6dXyapfILmVdF2WXIITwhOKyprZxuVJ570ljyHI1vps4Rsgl1gaaSWpVFqMscpaRmRJ2qatRHWJ21M_wEItTTUV0pDllv9NSERiEGUjwdqci-CXoAB0t62N99lg0btZPcWCaeZeLZRLwBbPPCPhvYr-kAdpmElqAD57_17CjkO0v4heZRA9hbUtYmNr23KjeVIRBTlzv_mHQX3vO7e6PLHqx28wXuEwzp3Oe4_Z4AJRDXnA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9KpdSXamulZ6vNg0_CnrtJ9uuxiL2zvTtEW7gXCZvcpAXxtlz3Hupf70w2h18IPmUJIWQzmcxvJvMB8Jp6XaF9lljUMtGkQySNsi6RznN6b-sKycHJ01kxvtYX83weg9VDLAwiBuczHPJneMtftG7NpjLi8EKRiKYb91FOakXZh2v9TK1XhXp4DAqSvK7m8REzS-u3k9Gnz6QMSj1UJP-VlL-JoVBXhZqWuOqvOzkImvMnMNsssfcv-Tpcd3bovv-RvfG__-Ep7EXIKc76M7IPW7g8gN1Y_fz24QB2RqG878Mz-HImIrOLaFYTBGoFgURBSJ2ubQ60EptEJqL1YhqcMVHEPK034uOKn34Ix4rRquHCFDS8_UZoH-8P4fr8_dW7cRILMCROZUWXIAfxeG-xora0ulFp6khnSVOsXbOwlrCNrzKsS6lVkfmqSFFKanLqVGWjnsP2sl3iEQhfLfKqVBy03uhF7RuF6En1tKQku8brAbzZ0MPc9Xk2TNBP0tow8QwTz0TiDeCQN_aXgf2eDuCYSWgIPHAGXMeuQq4zhGBoHjWAkw1lTWTUe6PSuqwJxlTFi39Megq746vpxEw-zC6P4TGvozfBnMB2t1rjSwIlnX0VjuIPpYza7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Science+Gateway+for+the+Repeatable+Analysis+of+Machine+Learning+Predicted+Gravity+Anomalies&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Arndt%2C+Jacob&rft.au=Wohlgemuth%2C+Jason&rft.au=Lexie+Yang%2C+H.&rft.au=Bowman%2C+Jordan&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=21&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2024.3441322&rft.externalDocID=10632562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon