A Science Gateway for the Repeatable Analysis of Machine Learning Predicted Gravity Anomalies
In recent years, deep learning has become an increasingly popular alternative for modeling in geoscience applications due to its scalability and efficiency. However, the interpretability, compute, data volume, and hyperparameter tuning requirements of deep learning models make development and monito...
Saved in:
Published in | IEEE geoscience and remote sensing letters Vol. 21; pp. 1 - 5 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-598X 1558-0571 |
DOI | 10.1109/LGRS.2024.3441322 |
Cover
Abstract | In recent years, deep learning has become an increasingly popular alternative for modeling in geoscience applications due to its scalability and efficiency. However, the interpretability, compute, data volume, and hyperparameter tuning requirements of deep learning models make development and monitoring difficult. Furthermore, model explainability and communicating results obtained by these models to users or domain experts is a challenge, as domain experts in geoscience also need to have a deep understanding of how those models function in order to support their scientific works. Here, we describe a science gateway and machine learning pipeline for predicting gravity anomalies from geophysical data. The gateway, built on open-source technologies, provides a holistic view of the pipeline through interactive visualizations aimed at enabling efficient exploratory data analysis. The repeatability, reproducibility, and monitoring capabilities of this overall system allow us to iterate and analyze at scale. Using this pipeline and gateway, we can repeatedly produce accurate high-resolution gravity anomaly datasets. By describing the underlying technologies, implementation, and results, we provide a foundation for the broader adoption of science gateways into cross-cutting geoscience and machine learning research projects as a means to improve the scientific discovery and collaboration in the geophysics and computational sciences community. |
---|---|
AbstractList | In recent years, deep learning has become an increasingly popular alternative for modeling in geoscience applications due to its scalability and efficiency. However, the interpretability, compute, data volume, and hyperparameter tuning requirements of deep learning models make development and monitoring difficult. Furthermore, model explainability and communicating results obtained by these models to users or domain experts is a challenge, as domain experts in geoscience also need to have a deep understanding of how those models function in order to support their scientific works. Here, we describe a science gateway and machine learning pipeline for predicting gravity anomalies from geophysical data. The gateway, built on open-source technologies, provides a holistic view of the pipeline through interactive visualizations aimed at enabling efficient exploratory data analysis. The repeatability, reproducibility, and monitoring capabilities of this overall system allow us to iterate and analyze at scale. Using this pipeline and gateway, we can repeatedly produce accurate high-resolution gravity anomaly datasets. By describing the underlying technologies, implementation, and results, we provide a foundation for the broader adoption of science gateways into cross-cutting geoscience and machine learning research projects as a means to improve the scientific discovery and collaboration in the geophysics and computational sciences community. In recent years, deep learning has become an increasingly popular alternative for modeling in geoscience applications due to its scalability and efficiency. However, the interpretability, compute, data volume, and hyperparameter tuning requirements of deep learning models make development and monitoring difficult. Furthermore, model explainability and communicating results obtained by these models to users or domain experts is a challenge, as domain experts in geoscience also need to have a deep understanding of how those models function in order to support their scientific works. Here, we describe a science gateway and machine learning pipeline for predicting gravity anomalies from geophysical data. The gateway, built on open-source technologies, provides a holistic view of the pipeline through interactive visualizations aimed at enabling efficient exploratory data analysis. The repeatability, reproducibility, and monitoring capabilities of this overall system allow us to iterate and analyze at scale. Using this pipeline and gateway, we can repeatedly produce accurate high-resolution gravity anomaly datasets. By describing the underlying technologies, implementation, and results, here we provide a foundation for the broader adoption of science gateways into cross-cutting geoscience and machine learning research projects as a means to improve the scientific discovery and collaboration in the geophysics and computational sciences community. |
Author | Bowman, Jordan Lunga, Dalton Arndt, Jacob Lexie Yang, H. King, Dawn Wohlgemuth, Jason |
Author_xml | – sequence: 1 givenname: Jacob orcidid: 0000-0002-1097-0428 surname: Arndt fullname: Arndt, Jacob email: arndtjw@ornl.gov organization: Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA – sequence: 2 givenname: Jason orcidid: 0000-0002-2057-9115 surname: Wohlgemuth fullname: Wohlgemuth, Jason email: wohlgemuthjh@ornl.gov organization: Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA – sequence: 3 givenname: H. orcidid: 0000-0003-2252-6778 surname: Lexie Yang fullname: Lexie Yang, H. email: yangh@ornl.gov organization: Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA – sequence: 4 givenname: Jordan orcidid: 0000-0002-3495-9186 surname: Bowman fullname: Bowman, Jordan email: bowmanjm1@ornl.gov organization: Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA – sequence: 5 givenname: Dalton orcidid: 0000-0003-0054-1141 surname: Lunga fullname: Lunga, Dalton email: lungadd@ornl.gov organization: Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA – sequence: 6 givenname: Dawn surname: King fullname: King, Dawn organization: National Geospatial-Intelligence Agency, St. Louis, MO, USA |
BackLink | https://www.osti.gov/servlets/purl/2441103$$D View this record in Osti.gov |
BookMark | eNpNkE1LAzEQhoNUsK3-AMFD0PPWfOznsRStworSKniRkE1nbUqb1CRV-u_Nsh68zDsMzwzMM0IDYw0gdEnJhFJS3dbzxXLCCEsnPE0pZ-wEDWmWlQnJCjro-jRLsqp8P0Mj7zckkmVZDNHHFC-VBqMAz2WAH3nErXU4rAEvYA8yyGYLeGrk9ui1x7bFT1KttQFcg3RGm0_84mClVYAVnjv5rcMx4nYntxr8OTpt5dbDxV-O0dv93evsIamf54-zaZ0oTvOQAMkL0rYNlDGLJpWcEMViIVApuWqaihdtSaEqWMpz2pY5AcZiZHHIC8nH6Lq_a33QwisdQK2VNQZUECwKoYRH6KaH9s5-HcAHsbEHFz_zgpOqqFhUkkeK9pRy1nsHrdg7vZPuKCgRnWrRqRadavGnOu5c9TsaAP7xOWdZzvgv7lx6og |
CODEN | IGRSBY |
Cites_doi | 10.1109/JSTARS.2019.2959707 10.1007/s10723-016-9385-8 10.1109/GCE.2010.5676129 10.1109/JSTARS.2021.3119001 10.5194/essd-11-647-2019 10.1016/j.future.2018.12.026 10.1088/1755-1315/509/1/012043 10.1029/2011JB008916 10.5194/essd-13-99-2021 10.1002/cpe.5040 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
CorporateAuthor | Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D OIOZB OTOTI |
DOI | 10.1109/LGRS.2024.3441322 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1558-0571 |
EndPage | 5 |
ExternalDocumentID | 2441103 10_1109_LGRS_2024_3441322 10632562 |
Genre | orig-research |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D OIOZB OTOTI |
ID | FETCH-LOGICAL-c316t-e0670ffbe86707b4a300c23000e9cadbb937f81e9724361f860e22f86581e37a3 |
IEDL.DBID | RIE |
ISSN | 1545-598X |
IngestDate | Mon Aug 11 02:20:40 EDT 2025 Mon Jun 30 10:17:45 EDT 2025 Wed Oct 01 04:26:04 EDT 2025 Wed Aug 27 02:03:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-e0670ffbe86707b4a300c23000e9cadbb937f81e9724361f860e22f86581e37a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE None AC05-00OR22725 |
ORCID | 0000-0003-2252-6778 0000-0003-0054-1141 0000-0002-2057-9115 0000-0002-1097-0428 0000-0002-3495-9186 0000000322526778 0000000234959186 0000000300541141 0000000220579115 0000000210970428 |
OpenAccessLink | https://www.osti.gov/servlets/purl/2441103 |
PQID | 3097922486 |
PQPubID | 75725 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_2441103 crossref_primary_10_1109_LGRS_2024_3441322 ieee_primary_10632562 proquest_journals_3097922486 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway – name: United States |
PublicationTitle | IEEE geoscience and remote sensing letters |
PublicationTitleAbbrev | LGRS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref8 ref7 (ref11) 2023 ref9 ref4 ref3 ref6 ref5 ref10 ref2 ref1 Bierhance (ref12) 2023 |
References_xml | – volume-title: pola-rs/tpch year: 2023 ident: ref11 – ident: ref7 doi: 10.1109/JSTARS.2019.2959707 – ident: ref1 doi: 10.1007/s10723-016-9385-8 – ident: ref3 doi: 10.1109/GCE.2010.5676129 – ident: ref6 doi: 10.1109/JSTARS.2021.3119001 – ident: ref10 doi: 10.5194/essd-11-647-2019 – ident: ref2 doi: 10.1016/j.future.2018.12.026 – ident: ref5 doi: 10.1088/1755-1315/509/1/012043 – ident: ref8 doi: 10.1029/2011JB008916 – ident: ref9 doi: 10.5194/essd-13-99-2021 – volume-title: USPolars—Make the Switch to Lightning-Fast Dataframes year: 2023 ident: ref12 – ident: ref4 doi: 10.1002/cpe.5040 |
SSID | ssj0024887 |
Score | 2.3805037 |
Snippet | In recent years, deep learning has become an increasingly popular alternative for modeling in geoscience applications due to its scalability and efficiency.... |
SourceID | osti proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Communication Convolutional neural networks Cross cutting dashboard Data analysis Data visualization Deep learning Earth science Feature extraction geodesy Geophysical data Geophysics GEOSCIENCES Gravity Gravity anomalies Learning algorithms Libraries Logic gates Machine learning Monitoring Pipelines Reproducibility Research projects science gateway Subject specialists |
Title | A Science Gateway for the Repeatable Analysis of Machine Learning Predicted Gravity Anomalies |
URI | https://ieeexplore.ieee.org/document/10632562 https://www.proquest.com/docview/3097922486 https://www.osti.gov/servlets/purl/2441103 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEB-sUNoXtWrp-VHy0Cdhz90kt7t5FKknpYpUhXuRsMlNFEpvy7n3oH-9M9kc1UqhT1lCyO5mMpnfTOYD4Av1-lKHInOoZaZJh8ga5XwmfeD03s6XkoOTz87L02v9bTKapGD1GAuDiNH5DIf8GO_yp61fsKmMOLxUJKLpxH1TVaYP1vqTWK-O1fAYEmQjU0_SFWaRm8Pv4x-XpApKPVQk_ZWUL4RQrKpCTUs89epEjmLmZB3Olx_Ye5f8HC46N_SPf-Vu_O8_2IC1BDjFUb9DPsAKzjbhXap9fvewCW_HsbjvwxbcHInE6iIZ1QRBWkEQURBOp0Obw6zEMo2JaIM4i66YKFKW1ltxMeeLH0KxYjxvuCwFDW9_EdbH-224Pvl6dXyapfILmVdF2WXIITwhOKyprZxuVJ570ljyHI1vps4Rsgl1gaaSWpVFqMscpaRmRJ2qatRHWJ21M_wEItTTUV0pDllv9NSERiEGUjwdqci-CXoAB0t62N99lg0btZPcWCaeZeLZRLwBbPPCPhvYr-kAdpmElqAD57_17CjkO0v4heZRA9hbUtYmNr23KjeVIRBTlzv_mHQX3vO7e6PLHqx28wXuEwzp3Oe4_Z4AJRDXnA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9KpdSXamulZ6vNg0_CnrtJ9uuxiL2zvTtEW7gXCZvcpAXxtlz3Hupf70w2h18IPmUJIWQzmcxvJvMB8Jp6XaF9lljUMtGkQySNsi6RznN6b-sKycHJ01kxvtYX83weg9VDLAwiBuczHPJneMtftG7NpjLi8EKRiKYb91FOakXZh2v9TK1XhXp4DAqSvK7m8REzS-u3k9Gnz6QMSj1UJP-VlL-JoVBXhZqWuOqvOzkImvMnMNsssfcv-Tpcd3bovv-RvfG__-Ep7EXIKc76M7IPW7g8gN1Y_fz24QB2RqG878Mz-HImIrOLaFYTBGoFgURBSJ2ubQ60EptEJqL1YhqcMVHEPK034uOKn34Ix4rRquHCFDS8_UZoH-8P4fr8_dW7cRILMCROZUWXIAfxeG-xora0ulFp6khnSVOsXbOwlrCNrzKsS6lVkfmqSFFKanLqVGWjnsP2sl3iEQhfLfKqVBy03uhF7RuF6En1tKQku8brAbzZ0MPc9Xk2TNBP0tow8QwTz0TiDeCQN_aXgf2eDuCYSWgIPHAGXMeuQq4zhGBoHjWAkw1lTWTUe6PSuqwJxlTFi39Megq746vpxEw-zC6P4TGvozfBnMB2t1rjSwIlnX0VjuIPpYza7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Science+Gateway+for+the+Repeatable+Analysis+of+Machine+Learning+Predicted+Gravity+Anomalies&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Arndt%2C+Jacob&rft.au=Wohlgemuth%2C+Jason&rft.au=Lexie+Yang%2C+H.&rft.au=Bowman%2C+Jordan&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=21&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2024.3441322&rft.externalDocID=10632562 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |