Arndt, J., Wohlgemuth, J., Lexie Yang, H., Bowman, J., Lunga, D., & King, D. (2024). A Science Gateway for the Repeatable Analysis of Machine Learning Predicted Gravity Anomalies. IEEE geoscience and remote sensing letters, 21, 1-5. https://doi.org/10.1109/LGRS.2024.3441322
Chicago Style (17th ed.) CitationArndt, Jacob, Jason Wohlgemuth, H. Lexie Yang, Jordan Bowman, Dalton Lunga, and Dawn King. "A Science Gateway for the Repeatable Analysis of Machine Learning Predicted Gravity Anomalies." IEEE Geoscience and Remote Sensing Letters 21 (2024): 1-5. https://doi.org/10.1109/LGRS.2024.3441322.
MLA (9th ed.) CitationArndt, Jacob, et al. "A Science Gateway for the Repeatable Analysis of Machine Learning Predicted Gravity Anomalies." IEEE Geoscience and Remote Sensing Letters, vol. 21, 2024, pp. 1-5, https://doi.org/10.1109/LGRS.2024.3441322.