An efficient hybrid multilayer perceptron neural network with grasshopper optimization

This paper proposes a new hybrid stochastic training algorithm using the recently proposed grasshopper optimization algorithm (GOA) for multilayer perceptrons (MLPs) neural networks. The GOA algorithm is an emerging technique with a high potential in tackling optimization problems based on its flexi...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 23; no. 17; pp. 7941 - 7958
Main Authors Heidari, Ali Asghar, Faris, Hossam, Aljarah, Ibrahim, Mirjalili, Seyedali
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-018-3424-2

Cover

More Information
Summary:This paper proposes a new hybrid stochastic training algorithm using the recently proposed grasshopper optimization algorithm (GOA) for multilayer perceptrons (MLPs) neural networks. The GOA algorithm is an emerging technique with a high potential in tackling optimization problems based on its flexible and adaptive searching mechanisms. It can demonstrate a satisfactory performance by escaping from local optima and balancing the exploration and exploitation trends. The proposed GOAMLP model is then applied to five important datasets: breast cancer, parkinson, diabetes, coronary heart disease, and orthopedic patients. The results are deeply validated in comparison with eight recent and well-regarded algorithms qualitatively and quantitatively. It is shown and proved that the proposed stochastic training algorithm GOAMLP is substantially beneficial in improving the classification rate of MLPs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-018-3424-2