Particle computation: complexity, algorithms, and logic
We investigate algorithmic control of a large swarm of mobile particles (such as robots, sensors, or building material) that move in a 2D workspace using a global input signal (such as gravity or a magnetic field). Upon activation of the field, each particle moves maximally in the same direction unt...
Saved in:
| Published in | Natural computing Vol. 18; no. 1; pp. 181 - 201 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.03.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1567-7818 1572-9796 |
| DOI | 10.1007/s11047-017-9666-6 |
Cover
| Summary: | We investigate algorithmic control of a large swarm of mobile particles (such as robots, sensors, or building material) that move in a 2D workspace using a global input signal (such as gravity or a magnetic field). Upon activation of the field, each particle moves maximally in the same direction until forward progress is blocked by a stationary obstacle or another stationary particle. In an open workspace, this system model is of limited use because it has only two controllable degrees of freedom—all particles receive the same inputs and move uniformly. We show that adding a maze of obstacles to the environment can make the system drastically more complex but also more useful. We provide a wide range of results for a wide range of questions. These can be subdivided into
external
algorithmic problems, in which particle configurations serve as input for computations that are performed elsewhere, and
internal
logic problems, in which the particle configurations themselves are used for carrying out computations. For external algorithms, we give both negative and positive results. If we are
given
a set of stationary obstacles, we prove that it is NP-hard to decide whether a given initial configuration of unit-sized particles can be transformed into a desired target configuration. Moreover, we show that finding a control sequence of minimum length is PSPACE-complete. We also work on the inverse problem, providing constructive algorithms to
design
workspaces that efficiently implement arbitrary permutations between different configurations. For internal logic, we investigate how arbitrary computations can be implemented. We demonstrate how to encode
dual-rail logic
to build a universal logic gate that concurrently evaluates
and
,
nand
,
nor
, and
or
operations. Using many of these gates and appropriate interconnects, we can evaluate any logical expression. However, we establish that simulating the full range of complex interactions present in arbitrary digital circuits encounters a fundamental difficulty: a
fan-out
gate cannot be generated. We resolve this missing component with the help of 2 × 1 particles, which can create
fan-out
gates that produce multiple copies of the inputs. Using these gates we provide rules for replicating arbitrary digital circuits. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1567-7818 1572-9796 |
| DOI: | 10.1007/s11047-017-9666-6 |