Multimodal Biometric Authentication Algorithm Using Iris, Palm Print, Face and Signature with Encoded DWT
A multimodal biometric system is applied to recognize individuals as authentication, identification and verification for claimed identity. Multimodal biometrics increases the security level accuracy, spoof of attacks, noise in collected data, intra-class variations, inter-class variations, non unive...
Saved in:
| Published in | Wireless personal communications Vol. 99; no. 1; pp. 23 - 34 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.03.2018
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0929-6212 1572-834X |
| DOI | 10.1007/s11277-017-5034-1 |
Cover
| Summary: | A multimodal biometric system is applied to recognize individuals as authentication, identification and verification for claimed identity. Multimodal biometrics increases the security level accuracy, spoof of attacks, noise in collected data, intra-class variations, inter-class variations, non universality etc. In this paper a multi modal biometric algorithm is designed by integrating iris, palm print, face and signature based on encoded discrete wavelet transform for image analysis and authentication. Multi level wavelet based fusion approach is applied, integrated and encoded into single composite image for matching decision. It reduces the memory size, increases the recognition accuracy and ERR using multimodal biometric approach when compared to individual biometric traits. The complexity of fusion and the reconstruction algorithm is suitable for many real time applications. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0929-6212 1572-834X |
| DOI: | 10.1007/s11277-017-5034-1 |