FDAC: Toward Fine-Grained Distributed Data Access Control in Wireless Sensor Networks

Distributed sensor data storage and retrieval have gained increasing popularity in recent years for supporting various applications. While distributed architecture enjoys a more robust and fault-tolerant wireless sensor network (WSN), such architecture also poses a number of security challenges espe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 22; no. 4; pp. 673 - 686
Main Authors Yu, Shucheng, Ren, Kui, Lou, Wenjing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1045-9219
1558-2183
DOI10.1109/TPDS.2010.130

Cover

More Information
Summary:Distributed sensor data storage and retrieval have gained increasing popularity in recent years for supporting various applications. While distributed architecture enjoys a more robust and fault-tolerant wireless sensor network (WSN), such architecture also poses a number of security challenges especially when applied in mission-critical applications such as battlefield and e-healthcare. First, as sensor data are stored and maintained by individual sensors and unattended sensors are easily subject to strong attacks such as physical compromise, it is significantly harder to ensure data security. Second, in many mission-critical applications, fine-grained data access control is a must as illegal access to the sensitive data may cause disastrous results and/or be prohibited by the law. Last but not least, sensor nodes usually are resource-constrained, which limits the direct adoption of expensive cryptographic primitives. To address the above challenges, we propose, in this paper, a distributed data access control scheme that is able to enforce fine-grained access control over sensor data and is resilient against strong attacks such as sensor compromise and user colluding. The proposed scheme exploits a novel cryptographic primitive called attribute-based encryption (ABE), tailors, and adapts it for WSNs with respect to both performance and security requirements. The feasibility of the scheme is demonstrated by experiments on real sensor platforms. To our best knowledge, this paper is the first to realize distributed fine-grained data access control for WSNs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2010.130