Mining Frequent Subgraph Patterns from Uncertain Graph Data
In many real applications, graph data is subject to uncertainties due to incompleteness and imprecision of data. Mining such uncertain graph data is semantically different from and computationally more challenging than mining conventional exact graph data. This paper investigates the problem of mini...
        Saved in:
      
    
          | Published in | IEEE transactions on knowledge and data engineering Vol. 22; no. 9; pp. 1203 - 1218 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.09.2010
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1041-4347 1558-2191  | 
| DOI | 10.1109/TKDE.2010.80 | 
Cover
| Summary: | In many real applications, graph data is subject to uncertainties due to incompleteness and imprecision of data. Mining such uncertain graph data is semantically different from and computationally more challenging than mining conventional exact graph data. This paper investigates the problem of mining uncertain graph data and especially focuses on mining frequent subgraph patterns on an uncertain graph database. A novel model of uncertain graphs is presented, and the frequent subgraph pattern mining problem is formalized by introducing a new measure, called expected support. This problem is proved to be NP-hard. An approximate mining algorithm is proposed to find a set of approximately frequent subgraph patterns by allowing an error tolerance on expected supports of discovered subgraph patterns. The algorithm uses efficient methods to determine whether a subgraph pattern can be output or not and a new pruning method to reduce the complexity of examining subgraph patterns. Analytical and experimental results show that the algorithm is very efficient, accurate, and scalable for large uncertain graph databases. To the best of our knowledge, this paper is the first one to investigate the problem of mining frequent subgraph patterns from uncertain graph data. | 
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23  | 
| ISSN: | 1041-4347 1558-2191  | 
| DOI: | 10.1109/TKDE.2010.80 |