Supercomputer Simulations of Ultrasound Tomography Problems of Flat Objects

This paper is concerned with investigating the capabilities of wave tomography methods via supercomputer numerical simulations on a model problem of imaging the wave velocity structure inside flat solid objects. The problem of reconstructing the velocity structure is formulated as a nonlinear coeffi...

Full description

Saved in:
Bibliographic Details
Published inLobachevskii journal of mathematics Vol. 41; no. 8; pp. 1563 - 1570
Main Author Romanov, S. Y.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.08.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1995-0802
1818-9962
DOI10.1134/S199508022008017X

Cover

More Information
Summary:This paper is concerned with investigating the capabilities of wave tomography methods via supercomputer numerical simulations on a model problem of imaging the wave velocity structure inside flat solid objects. The problem of reconstructing the velocity structure is formulated as a nonlinear coefficient inverse problem. Iterative algorithms for solving this inverse problem are based on computing the gradient of the residual functional between the experimentally measured wave field and the numerically computed wave field. A tomographic diagnostic method is proposed for imaging flat objects which are accessible only from a single side. The method employs two ultrasonic transducer arrays and takes into account reflections from the flat bottom of the object, assuming that the thickness of the object is known. The use of the reflections from the bottom is a key feature of the method, since it significantly increases the number of sounding angles and allows the transmitted waves to be registered. This study compares the results of solving inverse problems with complete and incomplete data sets. The proposed scalable numerical algorithms can be efficiently parallelized on supercomputers. The computations were performed on 50 CPU cores of the ‘‘Lomonosov-2’’ supercomputer at Lomonosov Moscow State University. Numerical simulations were carried out for various tomographic schemes using the high-performance algorithms and supercomputer software developed in this study. The acoustic and geometric parameters of the simulations correspond to a real experiment on nondestructive testing (NDT) of solids.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1995-0802
1818-9962
DOI:10.1134/S199508022008017X