Process techniques of charge transfer time reduction for high speed CMOS image sensors

This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD)...

Full description

Saved in:
Bibliographic Details
Published inJournal of semiconductors Vol. 35; no. 11; pp. 90 - 97
Main Author 曹中祥 李全良 韩烨 秦琦 冯鹏 刘力源 吴南健
Format Journal Article
LanguageEnglish
Published 01.11.2014
Subjects
Online AccessGet full text
ISSN1674-4926
DOI10.1088/1674-4926/35/11/114010

Cover

More Information
Summary:This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD) node by controlling and optimizing the N doping concentration in the PPD and the threshold voltage of the reset transistor, respectively. The techniques shorten the charge transfer time from the PPD diode to the FD node effectively. The proposed process techniques do not need extra masks and do not cause harm to the fill factor. A sub array of 32 x 64 pixels was designed and implemented in the 0.18 #m CIS process with five implantation conditions splitting the N region in the PPD. The simulation and measured results demonstrate that the charge transfer time can be decreased by using the proposed techniques. Comparing the charge transfer time of the pixel with the different implantation conditions of the N region, the charge transfer time of 0.32 μs is achieved and 31% of image lag was reduced by using the proposed process techniques.
Bibliography:CMOS image sensors; high speed; large-area pinned photodiode; charge transfer time; doping concentration; depletion mode transistor
11-5781/TN
This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD) node by controlling and optimizing the N doping concentration in the PPD and the threshold voltage of the reset transistor, respectively. The techniques shorten the charge transfer time from the PPD diode to the FD node effectively. The proposed process techniques do not need extra masks and do not cause harm to the fill factor. A sub array of 32 x 64 pixels was designed and implemented in the 0.18 #m CIS process with five implantation conditions splitting the N region in the PPD. The simulation and measured results demonstrate that the charge transfer time can be decreased by using the proposed techniques. Comparing the charge transfer time of the pixel with the different implantation conditions of the N region, the charge transfer time of 0.32 μs is achieved and 31% of image lag was reduced by using the proposed process techniques.
Cao Zhongxiang, Li Quanliang, Han Ye, Qin Qi, Feng Peng, Liu Liyuan, Wu Nanjian( State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-4926
DOI:10.1088/1674-4926/35/11/114010