Experimental study on supersonic film cooling on the surface of a blunt body in hypersonic flow

The experimental study focuses on the heat flux on a double cone blunt body in the presence of tangential-slot super- sonic injection into hypersonic flow. The tests are conducted in a contoured axisymmetric nozzle with Mach numbers of 7.3 and 8.1, and the total temperature is about 900 K. The injec...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 23; no. 10; pp. 315 - 322
Main Author 付佳 易仕和 王小虎 何霖 葛勇
Format Journal Article
LanguageEnglish
Published 01.10.2014
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/23/10/104702

Cover

More Information
Summary:The experimental study focuses on the heat flux on a double cone blunt body in the presence of tangential-slot super- sonic injection into hypersonic flow. The tests are conducted in a contoured axisymmetric nozzle with Mach numbers of 7.3 and 8.1, and the total temperature is about 900 K. The injection Mach number is 3.2, and total temperature is 300 K. A constant voltage circuit is developed to supply the temperature detectors instead of the normally used constant current circuit. The schlieren photographs are presented additionally to visualize the flow and help analyze the pressure relationship between the cooling flow and the main flow. The dependence of the film-cooling effectiveness on flow parameters, i.e. the blow ratio, the convective Mach number, and the attack angle, is determined. A semi-empirical formula is tested by the present data, and is improved for a better correlation.
Bibliography:Fu Jia, Yi Shi-He, Wang Xiao-Hu, He Lin, and Ge Yong( College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China)
The experimental study focuses on the heat flux on a double cone blunt body in the presence of tangential-slot super- sonic injection into hypersonic flow. The tests are conducted in a contoured axisymmetric nozzle with Mach numbers of 7.3 and 8.1, and the total temperature is about 900 K. The injection Mach number is 3.2, and total temperature is 300 K. A constant voltage circuit is developed to supply the temperature detectors instead of the normally used constant current circuit. The schlieren photographs are presented additionally to visualize the flow and help analyze the pressure relationship between the cooling flow and the main flow. The dependence of the film-cooling effectiveness on flow parameters, i.e. the blow ratio, the convective Mach number, and the attack angle, is determined. A semi-empirical formula is tested by the present data, and is improved for a better correlation.
11-5639/O4
slot film cooling, hypersonic, schlieren visualization, cooling effectiveness
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/23/10/104702