3D Numerical Simulation Analysis of Passive Drag near Free Surface in Swimming
The aim of this work is to build a 3D numerical model to study the characteristics of passive drag on competitive swimmers taking into account the impact of the free surface. This model solves the 3D incompressible Navier-Stokes equations using RNG k-ε turbulence closure. The volume of fluid(VOF) me...
Saved in:
Published in | China ocean engineering Vol. 29; no. 2; pp. 265 - 273 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Chinese Ocean Engineering Society
01.04.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0890-5487 2191-8945 |
DOI | 10.1007/s13344-014-0080-x |
Cover
Summary: | The aim of this work is to build a 3D numerical model to study the characteristics of passive drag on competitive swimmers taking into account the impact of the free surface. This model solves the 3D incompressible Navier-Stokes equations using RNG k-ε turbulence closure. The volume of fluid(VOF) method is used to locate the free surface. The 3D virtual model is created by Computer Aided Industrial Design(CAID) software, Rhinoceros. Firstly, a specific posture of swimming is studied. The simulation results are in good agreement with the data from mannequin towing experiments. The effects of a swimmer's arms and legs positions on swimming performance are then studied. Finally, it is demonstrated that the present method is capable of simulating gliding near the free surface. |
---|---|
Bibliography: | 32-1441/P swimming passive drag VOF method numerical simulation The aim of this work is to build a 3D numerical model to study the characteristics of passive drag on competitive swimmers taking into account the impact of the free surface. This model solves the 3D incompressible Navier-Stokes equations using RNG k-ε turbulence closure. The volume of fluid(VOF) method is used to locate the free surface. The 3D virtual model is created by Computer Aided Industrial Design(CAID) software, Rhinoceros. Firstly, a specific posture of swimming is studied. The simulation results are in good agreement with the data from mannequin towing experiments. The effects of a swimmer's arms and legs positions on swimming performance are then studied. Finally, it is demonstrated that the present method is capable of simulating gliding near the free surface. |
ISSN: | 0890-5487 2191-8945 |
DOI: | 10.1007/s13344-014-0080-x |