Enhanced bone formation in lipodystrophic PPARγhyp/hyp mice relocates haematopoiesis to the spleen

The peroxisome proliferator‐activated receptor gamma (PPARγ) controls adipogenesis and metabolism. We demonstrate here that the absence of PPARγ in fat has potent osteogenic activities, which affect haematopoiesis. The congenital absence of PPARγ in fat of lipodystrophic PPARγ hyp/hyp mice, strongly...

Full description

Saved in:
Bibliographic Details
Published inEMBO reports Vol. 5; no. 10; pp. 1007 - 1012
Main Authors Cock, Terrie-Anne, Back, Jonathan, Elefteriou, Florent, Karsenty, Gérard, Kastner, Philippe, Chan, Susan, Auwerx, Johan
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.10.2004
Nature Publishing Group UK
Subjects
Online AccessGet full text
ISSN1469-221X
1469-3178
DOI10.1038/sj.embor.7400254

Cover

Abstract The peroxisome proliferator‐activated receptor gamma (PPARγ) controls adipogenesis and metabolism. We demonstrate here that the absence of PPARγ in fat has potent osteogenic activities, which affect haematopoiesis. The congenital absence of PPARγ in fat of lipodystrophic PPARγ hyp/hyp mice, strongly enhanced bone mass and consequentially reduced the bone‐marrow cavity. Consistent with this, PPARγ hyp/hyp mice had a significant decrease in bone marrow cellularity and resorted to extramedullary haematopoiesis in the spleen to maintain haematopoiesis. Our data indicate that antagonizing PPARγ activity in fat could be an effective way to combat osteoporosis and suggest that haematopoietic function should be scrutinized in lipodystrophic subjects.
AbstractList The peroxisome proliferator‐activated receptor gamma (PPARγ) controls adipogenesis and metabolism. We demonstrate here that the absence of PPARγ in fat has potent osteogenic activities, which affect haematopoiesis. The congenital absence of PPARγ in fat of lipodystrophic PPARγhyp/hyp mice, strongly enhanced bone mass and consequentially reduced the bone‐marrow cavity. Consistent with this, PPARγhyp/hyp mice had a significant decrease in bone marrow cellularity and resorted to extramedullary haematopoiesis in the spleen to maintain haematopoiesis. Our data indicate that antagonizing PPARγ activity in fat could be an effective way to combat osteoporosis and suggest that haematopoietic function should be scrutinized in lipodystrophic subjects.
The peroxisome proliferator-activated receptor gamma (PPARγ) controls adipogenesis and metabolism. We demonstrate here that the absence of PPARγ in fat has potent osteogenic activities, which affect haematopoiesis. The congenital absence of PPARγ in fat of lipodystrophic PPARγ hyp/hyp mice, strongly enhanced bone mass and consequentially reduced the bone-marrow cavity. Consistent with this, PPARγ hyp/hyp mice had a significant decrease in bone marrow cellularity and resorted to extramedullary haematopoiesis in the spleen to maintain haematopoiesis. Our data indicate that antagonizing PPARγ activity in fat could be an effective way to combat osteoporosis and suggest that haematopoietic function should be scrutinized in lipodystrophic subjects.
Author Back, Jonathan
Cock, Terrie‐Anne
Kastner, Philippe
Elefteriou, Florent
Karsenty, Gérard
Auwerx, Johan
Chan, Susan
Author_xml – sequence: 1
  givenname: Terrie-Anne
  surname: Cock
  fullname: Cock, Terrie-Anne
  organization: Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, 67404, Illkirch, France
– sequence: 2
  givenname: Jonathan
  surname: Back
  fullname: Back, Jonathan
  organization: Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, 67404, Illkirch, France
– sequence: 3
  givenname: Florent
  surname: Elefteriou
  fullname: Elefteriou, Florent
  organization: Department of Molecular and Human Genetics, Baylor College of Medicine, Texas, 77030, Houston, USA
– sequence: 4
  givenname: Gérard
  surname: Karsenty
  fullname: Karsenty, Gérard
  organization: Department of Molecular and Human Genetics, Baylor College of Medicine, Texas, 77030, Houston, USA
– sequence: 5
  givenname: Philippe
  surname: Kastner
  fullname: Kastner, Philippe
  organization: Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, 67404, Illkirch, France
– sequence: 6
  givenname: Susan
  surname: Chan
  fullname: Chan, Susan
  organization: Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, 67404, Illkirch, France
– sequence: 7
  givenname: Johan
  surname: Auwerx
  fullname: Auwerx, Johan
  email: auwerx@igbmc.u-strasbg.fr
  organization: Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, 67404, Illkirch, France
BookMark eNqFkN1uFCEYhompsT967iE3MFsYBhhOTGqz2xqr1qZG4wlhmG87rDMwgam61-V9eE1iZ9XoQT0gQPie9yXPIdrzwQNCTylZUMLq47RZwNCEuJAVISWvHqADWglVMCrrvd25LOmHfXSY0oYQwpWsH6F9yhlXpaQHyC59Z7yFFjc5Gq9DHMzkgsfO496Nod2mKYaxcxZfXp5cff_WbcfjvPDgLOAIfbBmgoQ7AxkMY3CQXMJTwFMHOI09gH-MHq5Nn-DJbj9C71bL69Pz4uLN2YvTk4vCMsqroiUWgDcC1BpUVQlLay5rAVIJoTizLRdtqSrOStVaZZlirKlbCaq0XPB8PULP5tzxthmgteCnaHo9RjeYuNXBOP33i3edvgmfNS2Vyj_IAWIOsDGkFGGtrZvudORx12tK9E_tOm30nXa9055B8g_4q_QeRM3IF9fD9r_zevnq-dUfls5sypi_gag34Tb67Pa-vmJmXJrg6-8-Ez9pIZnk-v3rM83rt6uVuH6pP7IfnHW9tw
CitedBy_id crossref_primary_10_1016_j_cmet_2008_02_005
crossref_primary_10_1002_jcb_20777
crossref_primary_10_1152_japplphysiol_91530_2008
crossref_primary_10_3390_ijms18061236
crossref_primary_10_1016_j_cmet_2005_11_002
crossref_primary_10_1138_20100443
crossref_primary_10_1007_s00774_005_0599_2
crossref_primary_10_1111_j_1365_2796_2012_02564_x
crossref_primary_10_1002_jcp_25073
crossref_primary_10_1016_j_abb_2008_03_016
crossref_primary_10_1016_j_cmet_2008_11_007
crossref_primary_10_1517_13543784_16_2_195
crossref_primary_10_1538_expanim_62_255
crossref_primary_10_1177_0300060519870723
crossref_primary_10_1371_journal_pgen_1008244
crossref_primary_10_1517_14728220902915310
crossref_primary_10_1111_j_1365_2826_2008_01732_x
crossref_primary_10_4161_cc_9_18_13046
crossref_primary_10_1186_1472_6823_9_10
crossref_primary_10_3389_fendo_2016_00139
crossref_primary_10_1016_j_biocel_2008_08_002
crossref_primary_10_1007_s00018_012_1211_2
crossref_primary_10_1007_s11914_010_0016_1
crossref_primary_10_1016_j_arcmed_2011_08_005
crossref_primary_10_1002_jcb_21573
crossref_primary_10_1016_j_bone_2017_10_023
crossref_primary_10_1038_nm1672
crossref_primary_10_1016_j_bone_2005_07_008
crossref_primary_10_1016_j_cmet_2010_04_015
crossref_primary_10_1038_ncomms2087
crossref_primary_10_1111_j_1463_1326_2008_00931_x
crossref_primary_10_1210_me_2014_1316
crossref_primary_10_1002_0471142727_mb29b01s73
crossref_primary_10_1155_2012_607141
crossref_primary_10_1155_2010_541927
crossref_primary_10_1111_j_1365_2613_2012_00820_x
crossref_primary_10_1371_journal_pone_0067172
crossref_primary_10_1126_science_1222646
crossref_primary_10_1371_journal_pone_0051746
crossref_primary_10_1152_physrev_00008_2012
crossref_primary_10_1016_j_abb_2010_07_020
crossref_primary_10_1016_j_jep_2010_11_075
crossref_primary_10_1111_j_1365_2362_2005_01456_x
crossref_primary_10_1371_journal_pone_0105976
crossref_primary_10_1007_s11154_006_9011_3
crossref_primary_10_1159_000331753
crossref_primary_10_1359_jbmr_070313
crossref_primary_10_1002_jbmr_480
crossref_primary_10_1016_j_bone_2015_04_026
crossref_primary_10_1155_2010_219583
crossref_primary_10_3389_fimmu_2018_02573
crossref_primary_10_1155_2009_421376
crossref_primary_10_3390_ijerph18189724
crossref_primary_10_1038_nrrheum_2009_102
crossref_primary_10_1210_er_2009_0024
crossref_primary_10_1016_j_intimp_2013_03_035
crossref_primary_10_1016_j_tem_2010_08_006
crossref_primary_10_1073_pnas_0408742102
crossref_primary_10_1093_toxsci_kfr140
crossref_primary_10_1016_j_injury_2022_09_017
crossref_primary_10_1002_stem_405
crossref_primary_10_1007_s00223_007_9015_3
crossref_primary_10_1016_S1671_2927_11_60007_2
crossref_primary_10_1586_eem_09_3
crossref_primary_10_1002_jcb_21994
crossref_primary_10_1038_srep26646
crossref_primary_10_1155_2007_81219
crossref_primary_10_1155_PPAR_2006_27489
crossref_primary_10_1016_j_jns_2012_03_026
crossref_primary_10_3389_fendo_2020_00065
crossref_primary_10_1038_nm0609_588
crossref_primary_10_1042_CS20080195
crossref_primary_10_1152_ajpendo_00569_2011
crossref_primary_10_1007_s00223_004_0108_y
crossref_primary_10_1093_gerona_glaa049
crossref_primary_10_1155_2015_372156
crossref_primary_10_1016_j_jnutbio_2013_12_005
crossref_primary_10_1002_jcp_20804
crossref_primary_10_1016_j_clinbiochem_2011_06_981
crossref_primary_10_1155_2018_1540148
crossref_primary_10_1074_jbc_M700030200
crossref_primary_10_1155_2017_8085325
crossref_primary_10_1007_s12018_012_9129_7
Cites_doi 10.1016/S0092-8674(00)81558-5
10.1126/science.1090985
10.1101/gad.12.20.3168
10.1097/00003072-199501000-00021
10.1038/sj.embor.7400082
10.1002/ajmg.10437
10.1073/pnas.2336090100
10.1006/bbrc.1999.0896
10.1016/S0092-8674(02)01049-8
10.1182/blood.V89.5.1507
10.1210/en.2003-0746
10.1073/pnas.0308744101
10.1182/blood.V95.11.3363
10.1056/NEJM199502023320506
10.1038/nature02040
10.1038/nature01660
10.1002/ajh.2830110307
10.1172/JCI200419900
10.1182/blood-2003-11-4089
10.1093/hmg/7.3.435
10.1146/annurev.nutr.22.010402.102808
10.1210/endo.143.6.8834
10.1097/00005792-200303000-00007
10.1016/S0301-472X(02)00899-8
10.1016/S8756-3282(00)00317-3
10.1172/JCI0214506
10.1101/gad.12.20.3182
10.1002/(SICI)1097-4644(19990901)74:3<357::AID-JCB5>3.0.CO;2-7
10.1038/nature02041
10.1016/S0960-9822(02)70684-2
ContentType Journal Article
Copyright European Molecular Biology Organization 2004
Copyright © 2004 European Molecular Biology Organization
Copyright © 2004, European Molecular Biology Organization 2004
Copyright_xml – notice: European Molecular Biology Organization 2004
– notice: Copyright © 2004 European Molecular Biology Organization
– notice: Copyright © 2004, European Molecular Biology Organization 2004
DBID BSCLL
AAYXX
CITATION
5PM
DOI 10.1038/sj.embor.7400254
DatabaseName Istex
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1469-3178
EndPage 1012
ExternalDocumentID PMC1299154
10_1038_sj_embor_7400254
EMBR7400254
ark_67375_WNG_58QFF6TK_Z
Genre article
GroupedDBID ---
-DZ
-Q-
.55
0R~
1OC
29G
2WC
33P
36B
39C
3O-
53G
5GY
5VS
70F
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAESR
AAEVG
AAHBH
AAJSJ
AAMMB
AANHP
AANLZ
AAONW
AASGY
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABUWG
ABZEH
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ASPBG
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAWUL
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BMNLL
BMXJE
BPHCQ
BRXPI
BSCLL
BTFSW
BVXVI
C1A
C6C
CAG
CCPQU
COF
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DWQXO
E3Z
EBLON
EBS
EJD
EMB
EMOBN
F5P
FEDTE
FYUFA
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HK~
HMCUK
HVGLF
HYE
H~9
KQ8
L7B
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M1P
M2O
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NAO
O9-
OK1
P2P
P2W
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q2X
R.K
RHI
RNI
RNS
ROL
RPM
RZO
SV3
TR2
UKHRP
WBKPD
WIH
WIK
WIN
WOHZO
WOQ
WXSBR
X7M
ZGI
ZZTAW
24P
3V.
88A
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
ALIPV
M0L
RHF
WYJ
ABJNI
RIG
AAYXX
CITATION
5PM
ID FETCH-LOGICAL-c3154-d0cee5b6e9fe9446c185786e7966953cd56d2945329dc9c3933b8d7e92c565393
IEDL.DBID AAJSJ
ISSN 1469-221X
IngestDate Thu Aug 21 14:06:27 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Tue Jul 01 02:52:03 EDT 2025
Wed Jan 22 16:22:09 EST 2025
Fri Feb 21 02:43:40 EST 2025
Sun Sep 21 06:19:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords nuclear receptors
extramedullary haematopoiesis
osteoporosis
lipodystrophy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3154-d0cee5b6e9fe9446c185786e7966953cd56d2945329dc9c3933b8d7e92c565393
Notes ark:/67375/WNG-58QFF6TK-Z
ArticleID:EMBR7400254
istex:7D54F85B4486167944AE708182E009FC1F78767F
These authors contributed equally to this work
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/1299154
PMID 15359271
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1299154
crossref_citationtrail_10_1038_sj_embor_7400254
crossref_primary_10_1038_sj_embor_7400254
wiley_primary_10_1038_sj_embor_7400254_EMBR7400254
springer_journals_10_1038_sj_embor_7400254
istex_primary_ark_67375_WNG_58QFF6TK_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2004
PublicationDateYYYYMMDD 2004-10-01
PublicationDate_xml – month: 10
  year: 2004
  text: October 2004
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: London
PublicationTitle EMBO reports
PublicationTitleAbbrev EMBO Rep
PublicationYear 2004
Publisher John Wiley & Sons, Ltd
Nature Publishing Group UK
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Nature Publishing Group UK
References Bennett BDet al (1996) A role for leptin and its cognate receptor in hematopoiesis. Curr Biol6: 1170-1180
Tagaya Het al (2000) Intramedullary and extramedullary B lymphopoiesis in osteopetrotic mice. Blood95: 3363-3370
Klein RFet al (2004) Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science303: 229-232
Back Jet al (2004) PU.1 determines the self-renewal capacity of erythroid progenitor cells. Blood103: 3615-3623
Ogawa Set al (1999) Association of bone mineral density with a polymorphism of the peroxisome proliferator-activated receptor gamma gene: PPARγ expression in osteoblasts. Biochem Biophys Res Commun260: 122-126
Lecka-Czernik B, Gubrij I, Moerman EJ, Kajkenova O, Lipschitz DA, Manolagas SC, Jilka RL (1999) Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2. J Cell Biochem74: 357-371
Okubo K, Yanai N, Ikawa S, Obinata M (2002) Reversible switching of expression of c-kit and Pqx-5 in immature hematopoietic progenitor cells by stromal cells. Exp Hematol30: 1193-1201
Nuttall ME, Gimble JM (2000) Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis?Bone27: 177-184
Ducy Pet al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell100: 197-207
Koutnikova Het al (2003) Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPARγ hypomorphic mice. Proc Natl Acad Sci USA100: 14457-14462
Rajab Aet al (2002) Heterogeneity for congenital generalized lipodystrophy in seventeen patients from Oman. Am J Med Genet110: 219-225
Mikhail AAet al (1997) Leptin stimulates fetal and adult erythroid and myeloid development. Blood89: 1507-1512
Picard F, Auwerx J (2002) PPARγ and glucose homeostasis. Annu Rev Nutr22: 167-197
Calvi LMAet al (2003) Osteoblastic cells regulate the hematopoietic stem cell niche. Nature425: 841-847
Misra A, Garg A (2003) Clinical features and metabolic derangements in acquired generalized lipodystrophy: case reports and review of the literature. Medicine (Baltimore)82: 129-146
Zhang JNet al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature425: 836-841
Takeda Set al (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell111: 305-317
Meirhaeghe Aet al (1998) A genetic polymorphism of the PPARγ gene influences plasma leptin levels in obese humans. Hum Mol Genet7: 435-440
Cock TAet al (2004) PPARγ: too much of a good thing causes harm. EMBO Rep5: 142-147
Shimomura Iet al (1998) Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev12: 3182-3194
Yokota Tet al (2002) Paracrine regulation of fat cell formation in bone marrow cultures via adiponectin and prostaglandins. J Clin Invest109: 1303-1310
Manolagas SC, Jilka RL (1995) Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med332: 305-311
Lecka-Czernik Bet al (2002) Divergent effects of selective PPARγ2 ligands on adipocyte versus osteoblast differentiation. Endocrinology143: 2376-2384
Rzonca SOet al (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology145: 401-406
Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature423: 349-355
Freedman MH, Saunders EF (1981) Hematopoiesis in the human spleen. Am J Hematol11: 271-275
Akune Tet al (2004) PPAR γ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest113: 846-855
Caluser C, Scott A, Macapinlac H, Yeh S, Rosenfelt N, Farid B, Abdel-Dayem HM, Larson SM, Kalaigian H (1995) Extramedullary hematopoiesis assessment in a patient with osteopetrosis. Clin Nucl Med20: 75
Elefteriou Fet al (2004) Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci USA101: 3258-3263
Moitra Jet al (1998) Life without fat: a transgenic mouse. Genes Dev12: 3168-3181
2004; 101
2004; 145
2004; 303
2004; 103
2000; 27
2002; 30
2002; 110
2002; 111
1997; 89
2000; 95
2004; 5
1995; 332
1995; 20
2003; 425
2004; 113
2002; 143
1999; 260
2002; 22
1999; 74
2000; 100
2002; 109
2003; 423
1998; 7
2003; 82
2003; 100
1998; 12
1996; 6
1981; 11
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Calvi LMAet al (2003) Osteoblastic cells regulate the hematopoietic stem cell niche. Nature425: 841-847
– reference: Lecka-Czernik Bet al (2002) Divergent effects of selective PPARγ2 ligands on adipocyte versus osteoblast differentiation. Endocrinology143: 2376-2384
– reference: Okubo K, Yanai N, Ikawa S, Obinata M (2002) Reversible switching of expression of c-kit and Pqx-5 in immature hematopoietic progenitor cells by stromal cells. Exp Hematol30: 1193-1201
– reference: Picard F, Auwerx J (2002) PPARγ and glucose homeostasis. Annu Rev Nutr22: 167-197
– reference: Ogawa Set al (1999) Association of bone mineral density with a polymorphism of the peroxisome proliferator-activated receptor gamma gene: PPARγ expression in osteoblasts. Biochem Biophys Res Commun260: 122-126
– reference: Meirhaeghe Aet al (1998) A genetic polymorphism of the PPARγ gene influences plasma leptin levels in obese humans. Hum Mol Genet7: 435-440
– reference: Akune Tet al (2004) PPAR γ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest113: 846-855
– reference: Rzonca SOet al (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology145: 401-406
– reference: Misra A, Garg A (2003) Clinical features and metabolic derangements in acquired generalized lipodystrophy: case reports and review of the literature. Medicine (Baltimore)82: 129-146
– reference: Manolagas SC, Jilka RL (1995) Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med332: 305-311
– reference: Koutnikova Het al (2003) Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPARγ hypomorphic mice. Proc Natl Acad Sci USA100: 14457-14462
– reference: Takeda Set al (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell111: 305-317
– reference: Back Jet al (2004) PU.1 determines the self-renewal capacity of erythroid progenitor cells. Blood103: 3615-3623
– reference: Lecka-Czernik B, Gubrij I, Moerman EJ, Kajkenova O, Lipschitz DA, Manolagas SC, Jilka RL (1999) Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2. J Cell Biochem74: 357-371
– reference: Moitra Jet al (1998) Life without fat: a transgenic mouse. Genes Dev12: 3168-3181
– reference: Tagaya Het al (2000) Intramedullary and extramedullary B lymphopoiesis in osteopetrotic mice. Blood95: 3363-3370
– reference: Cock TAet al (2004) PPARγ: too much of a good thing causes harm. EMBO Rep5: 142-147
– reference: Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature423: 349-355
– reference: Nuttall ME, Gimble JM (2000) Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis?Bone27: 177-184
– reference: Rajab Aet al (2002) Heterogeneity for congenital generalized lipodystrophy in seventeen patients from Oman. Am J Med Genet110: 219-225
– reference: Caluser C, Scott A, Macapinlac H, Yeh S, Rosenfelt N, Farid B, Abdel-Dayem HM, Larson SM, Kalaigian H (1995) Extramedullary hematopoiesis assessment in a patient with osteopetrosis. Clin Nucl Med20: 75
– reference: Mikhail AAet al (1997) Leptin stimulates fetal and adult erythroid and myeloid development. Blood89: 1507-1512
– reference: Zhang JNet al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature425: 836-841
– reference: Freedman MH, Saunders EF (1981) Hematopoiesis in the human spleen. Am J Hematol11: 271-275
– reference: Yokota Tet al (2002) Paracrine regulation of fat cell formation in bone marrow cultures via adiponectin and prostaglandins. J Clin Invest109: 1303-1310
– reference: Bennett BDet al (1996) A role for leptin and its cognate receptor in hematopoiesis. Curr Biol6: 1170-1180
– reference: Ducy Pet al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell100: 197-207
– reference: Elefteriou Fet al (2004) Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci USA101: 3258-3263
– reference: Shimomura Iet al (1998) Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev12: 3182-3194
– reference: Klein RFet al (2004) Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science303: 229-232
– volume: 89
  start-page: 1507
  year: 1997
  end-page: 1512
  article-title: Leptin stimulates fetal and adult erythroid and myeloid development
  publication-title: Blood
– volume: 145
  start-page: 401
  year: 2004
  end-page: 406
  article-title: Bone is a target for the antidiabetic compound rosiglitazone
  publication-title: Endocrinology
– volume: 425
  start-page: 841
  year: 2003
  end-page: 847
  article-title: Osteoblastic cells regulate the hematopoietic stem cell niche
  publication-title: Nature
– volume: 6
  start-page: 1170
  year: 1996
  end-page: 1180
  article-title: A role for leptin and its cognate receptor in hematopoiesis
  publication-title: Curr Biol
– volume: 303
  start-page: 229
  year: 2004
  end-page: 232
  article-title: Regulation of bone mass in mice by the lipoxygenase gene Alox15
  publication-title: Science
– volume: 82
  start-page: 129
  year: 2003
  end-page: 146
  article-title: Clinical features and metabolic derangements in acquired generalized lipodystrophy: case reports and review of the literature
  publication-title: Medicine (Baltimore)
– volume: 103
  start-page: 3615
  year: 2004
  end-page: 3623
  article-title: PU.1 determines the self‐renewal capacity of erythroid progenitor cells
  publication-title: Blood
– volume: 30
  start-page: 1193
  year: 2002
  end-page: 1201
  article-title: Reversible switching of expression of c‐kit and Pqx‐5 in immature hematopoietic progenitor cells by stromal cells
  publication-title: Exp Hematol
– volume: 100
  start-page: 14457
  year: 2003
  end-page: 14462
  article-title: Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPARγ hypomorphic mice
  publication-title: Proc Natl Acad Sci USA
– volume: 20
  start-page: 75
  year: 1995
  article-title: Extramedullary hematopoiesis assessment in a patient with osteopetrosis
  publication-title: Clin Nucl Med
– volume: 100
  start-page: 197
  year: 2000
  end-page: 207
  article-title: Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass
  publication-title: Cell
– volume: 260
  start-page: 122
  year: 1999
  end-page: 126
  article-title: Association of bone mineral density with a polymorphism of the peroxisome proliferator‐activated receptor gamma gene: PPARγ expression in osteoblasts
  publication-title: Biochem Biophys Res Commun
– volume: 111
  start-page: 305
  year: 2002
  end-page: 317
  article-title: Leptin regulates bone formation via the sympathetic nervous system
  publication-title: Cell
– volume: 7
  start-page: 435
  year: 1998
  end-page: 440
  article-title: A genetic polymorphism of the PPARγ gene influences plasma leptin levels in obese humans
  publication-title: Hum Mol Genet
– volume: 113
  start-page: 846
  year: 2004
  end-page: 855
  article-title: PPAR γ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors
  publication-title: J Clin Invest
– volume: 27
  start-page: 177
  year: 2000
  end-page: 184
  article-title: Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis?
  publication-title: Bone
– volume: 5
  start-page: 142
  year: 2004
  end-page: 147
  article-title: PPARγ: too much of a good thing causes harm
  publication-title: EMBO Rep
– volume: 143
  start-page: 2376
  year: 2002
  end-page: 2384
  article-title: Divergent effects of selective PPARγ2 ligands on adipocyte versus osteoblast differentiation
  publication-title: Endocrinology
– volume: 101
  start-page: 3258
  year: 2004
  end-page: 3263
  article-title: Serum leptin level is a regulator of bone mass
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 3168
  year: 1998
  end-page: 3181
  article-title: Life without fat: a transgenic mouse
  publication-title: Genes Dev
– volume: 12
  start-page: 3182
  year: 1998
  end-page: 3194
  article-title: Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP‐1c in adipose tissue: model for congenital generalized lipodystrophy
  publication-title: Genes Dev
– volume: 11
  start-page: 271
  year: 1981
  end-page: 275
  article-title: Hematopoiesis in the human spleen
  publication-title: Am J Hematol
– volume: 22
  start-page: 167
  year: 2002
  end-page: 197
  article-title: PPARγ and glucose homeostasis
  publication-title: Annu Rev Nutr
– volume: 425
  start-page: 836
  year: 2003
  end-page: 841
  article-title: Identification of the haematopoietic stem cell niche and control of the niche size
  publication-title: Nature
– volume: 109
  start-page: 1303
  year: 2002
  end-page: 1310
  article-title: Paracrine regulation of fat cell formation in bone marrow cultures via adiponectin and prostaglandins
  publication-title: J Clin Invest
– volume: 423
  start-page: 349
  year: 2003
  end-page: 355
  article-title: Control of osteoblast function and regulation of bone mass
  publication-title: Nature
– volume: 74
  start-page: 357
  year: 1999
  end-page: 371
  article-title: Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2
  publication-title: J Cell Biochem
– volume: 95
  start-page: 3363
  year: 2000
  end-page: 3370
  article-title: Intramedullary and extramedullary B lymphopoiesis in osteopetrotic mice
  publication-title: Blood
– volume: 332
  start-page: 305
  year: 1995
  end-page: 311
  article-title: Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis
  publication-title: N Engl J Med
– volume: 110
  start-page: 219
  year: 2002
  end-page: 225
  article-title: Heterogeneity for congenital generalized lipodystrophy in seventeen patients from Oman
  publication-title: Am J Med Genet
– ident: e_1_2_6_8_1
  doi: 10.1016/S0092-8674(00)81558-5
– ident: e_1_2_6_12_1
  doi: 10.1126/science.1090985
– ident: e_1_2_6_20_1
  doi: 10.1101/gad.12.20.3168
– ident: e_1_2_6_5_1
  doi: 10.1097/00003072-199501000-00021
– ident: e_1_2_6_7_1
  doi: 10.1038/sj.embor.7400082
– ident: e_1_2_6_25_1
  doi: 10.1002/ajmg.10437
– ident: e_1_2_6_13_1
  doi: 10.1073/pnas.2336090100
– ident: e_1_2_6_22_1
  doi: 10.1006/bbrc.1999.0896
– ident: e_1_2_6_29_1
  doi: 10.1016/S0092-8674(02)01049-8
– ident: e_1_2_6_18_1
  doi: 10.1182/blood.V89.5.1507
– ident: e_1_2_6_26_1
  doi: 10.1210/en.2003-0746
– ident: e_1_2_6_9_1
  doi: 10.1073/pnas.0308744101
– ident: e_1_2_6_28_1
  doi: 10.1182/blood.V95.11.3363
– ident: e_1_2_6_16_1
  doi: 10.1056/NEJM199502023320506
– ident: e_1_2_6_6_1
  doi: 10.1038/nature02040
– ident: e_1_2_6_11_1
  doi: 10.1038/nature01660
– ident: e_1_2_6_10_1
  doi: 10.1002/ajh.2830110307
– ident: e_1_2_6_2_1
  doi: 10.1172/JCI200419900
– ident: e_1_2_6_3_1
  doi: 10.1182/blood-2003-11-4089
– ident: e_1_2_6_17_1
  doi: 10.1093/hmg/7.3.435
– ident: e_1_2_6_24_1
  doi: 10.1146/annurev.nutr.22.010402.102808
– ident: e_1_2_6_15_1
  doi: 10.1210/endo.143.6.8834
– ident: e_1_2_6_19_1
  doi: 10.1097/00005792-200303000-00007
– ident: e_1_2_6_23_1
  doi: 10.1016/S0301-472X(02)00899-8
– ident: e_1_2_6_21_1
  doi: 10.1016/S8756-3282(00)00317-3
– ident: e_1_2_6_30_1
  doi: 10.1172/JCI0214506
– ident: e_1_2_6_27_1
  doi: 10.1101/gad.12.20.3182
– ident: e_1_2_6_14_1
  doi: 10.1002/(SICI)1097-4644(19990901)74:3<357::AID-JCB5>3.0.CO;2-7
– ident: e_1_2_6_31_1
  doi: 10.1038/nature02041
– ident: e_1_2_6_4_1
  doi: 10.1016/S0960-9822(02)70684-2
SSID ssj0005978
Score 1.7353545
SecondaryResourceType review_article
Snippet The peroxisome proliferator‐activated receptor gamma (PPARγ) controls adipogenesis and metabolism. We demonstrate here that the absence of PPARγ in fat has...
The peroxisome proliferator-activated receptor gamma (PPARγ) controls adipogenesis and metabolism. We demonstrate here that the absence of PPARγ in fat has...
SourceID pubmedcentral
crossref
wiley
springer
istex
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1007
SubjectTerms extramedullary haematopoiesis
lipodystrophy
nuclear receptors
osteoporosis
Scientific Report
Title Enhanced bone formation in lipodystrophic PPARγhyp/hyp mice relocates haematopoiesis to the spleen
URI https://api.istex.fr/ark:/67375/WNG-58QFF6TK-Z/fulltext.pdf
https://link.springer.com/article/10.1038/sj.embor.7400254
https://onlinelibrary.wiley.com/doi/abs/10.1038%2Fsj.embor.7400254
https://pubmed.ncbi.nlm.nih.gov/PMC1299154
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NViBeEAzQysfkB4QEUtbGzof9WFDL6NRpjE1UvFiJ4ygZI4maItG_i_-Dv4mz6wZVk4Z4iBQpdnzy2fehu_sdwKtUUIWaNPeSXOReQFXucZab_CflZ4onVPumOHl-Gh1fBrNFuNiD0bYWxibtW0hLK6a32WHD9upIf8ddOYoDW8B9B_o8RuHbg_54PPs8-5vWIaz0RQEgPEr9hQtNjhi_8Y8dVdQ3u_rzZmpkFx_dtV6t-pk-hAfObiTjDaWPYE9X-3B300lyvQ_35i5G_hjUpCpsWJ-kdaVJV51Iyopcl02drdvVsm6KUpGzs_H571_FuhniQ0xjerLURruh_UmKxMC51k2NvnTZklVN0FYkbWNyL57A5XRy8f7Yc60UPMXQSPKyESrDMI20yLVAD1AZCCge6Ri9HREylYVRRkUQMioyJRQTjKU8izVyMjTgtewp9Cok-gCI70c88FUS0EwHPEk4Z4mIgpwaaK80igcw3O6qVA5n3LS7uJY23s24bK-k5YN0fBjAm25Gs8HYuGXsa8uobmCy_GZy0-JQfjn9IEP-aTqNLk7k1wHEO5zsJhg87d0vVVlYXG00fYRvlni75bl0F7q9hR5qT8U_CZeT-btz9_7sf1Z4Dvc34JLmAr2A3mr5Q79EQ2iVHrqzf4iuwMeTPxYECdk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD60Cev6MrauY-luehiDDdzEki_SYzaSZWkTui5lYS_ClmXsXmwTZ7D8rv2P_aZJiuIRCi17MBgsWQcdSecT55zvALyNGRbKkqZOlLLU8bBIHUpSHf8k3ETQCEtXJydPpsHowhvP_fkO9Da5MCZo31BammN6Ex3WrS-P5Y2alePQMwncu9CmmgazBe1-f_xt_C-sg5nTVx0AzMHYnVvXZI_QW__YMkVtPau_bodGNv7RbfRqzM_wMTyyuBH115I-gR1ZHMCDdSXJ1QHsTayP_CmIQZEZtz6Ky0KiJjsR5QW6zqsyWdXLRVlluUBnZ_3zP7-zVdVVD9KF6dFCauum8CfKIk3nWlalukvnNVqWSGFFVFc69uIQLoaD2aeRY0spOIIokOQkPWUM_TiQLJVM3QCFpoCigQzVbYf5RCR-kGDm-QSzRDBBGCExTUKpNOlr8lryDFqFEvo5INcNqOeKyMOJ9GgUUUoiFngp1tRecRB2oLuZVS4sz7gud3HNjb-bUF5fcqMHbvXQgfdNj2rNsXFH23dGUU3DaHGlY9NCn3-ffuY-_TocBrMT_qMD4ZYmmw6aT3v7S5FnhldbQR_m6iE-bHTO7Yau75AHm1Vxr-B8MPl4bt-P_meEN_BwNJuc8tMv05MXsL8mmtSb6SW0louf8pUCRcv4td0HfwF4hgvP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED9BKyZeEAwQZfzxA0ICKe1i54_9WKBhdLQqYxPVXqzEcZSMLYmaItHPxffgM2E7blA1aYiHSJFixyef7ftZd_c7gFcJw0JZ0syJM5Y5HhaZQ0mm45-EmwoaY-nq5OTZPDg686ZLf2mTwhobVtlSWppjehsdNmouhvJKzcow9EwC97BOs9vQp9rR2IP-eDz9Ov0b2sHMCawOAeZg7C6te_KQ0Gv_2TFHfT2zP6-HR3Y-0l0Ea0xQdB_uWeyIxq20D-CWLPfhTltNcrMPezPrJ38IYlLmxrWPkqqUqMtQREWJLou6SjfNelXVeSHQYjE--f0r39Qj9SBdnB6tpLZwCoOiPNaUrlVdqft00aB1hRReRE2t4y8ewVk0OX1_5NhyCo4gCig56aEyiH4SSJZJpm6BQtNA0UCG6sbDfCJSP0gx83yCWSqYIIyQhKahVNr0NYEteQy9Ugn9BJDrBtRzRezhVHo0jiklMQu8DGt6ryQIBzDazioXlmtcl7y45MbnTShvLrjRA7d6GMCbrkfd8mzc0Pa1UVTXMF591_Fpoc-_zT9yn36JouD0mJ8PINzRZNdBc2rvfimL3HBrK_jDXD3E263Oud3UzQ3yYLMq_ik4n8zendj3p_8zwkvYW3yI-OdP8-MDuNtyTer99Ax669UP-VzhonXywm6DPzJqDNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+bone+formation+in+lipodystrophic+PPAR%CE%B3hyp%2Fhyp+mice+relocates+haematopoiesis+to+the+spleen&rft.jtitle=EMBO+reports&rft.au=Cock%2C+Terrie-Anne&rft.au=Back%2C+Jonathan&rft.au=Elefteriou%2C+Florent&rft.au=Karsenty%2C+G%C3%A9rard&rft.date=2004-10-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1469-221X&rft.eissn=1469-3178&rft.volume=5&rft.issue=10&rft.spage=1007&rft.epage=1012&rft_id=info:doi/10.1038%2Fsj.embor.7400254&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_58QFF6TK_Z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon