Efficiency enhancement of InGaN based blue light emitting diodes with InGaN/GaN multilayer barriers
The advantages of InGaN based light-emitting diodes with InGaN/GaN multilayer barriers are studied. It is found that the structure with InGaN/GaN multilayer barriers shows improved light output power, lower current leakage, and less efficiency droop over its conventional InGaN/GaN counterparts. Base...
Saved in:
| Published in | Chinese physics B Vol. 21; no. 11; pp. 528 - 532 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.11.2012
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1056 2058-3834 1741-4199 |
| DOI | 10.1088/1674-1056/21/11/118502 |
Cover
| Summary: | The advantages of InGaN based light-emitting diodes with InGaN/GaN multilayer barriers are studied. It is found that the structure with InGaN/GaN multilayer barriers shows improved light output power, lower current leakage, and less efficiency droop over its conventional InGaN/GaN counterparts. Based on the numerical simulation and analysis, these improvements on the electrical and the optical characteristics are mainly attributed to the alleviation of the electrostatic field in the quantum wells (QWs) when the InGaN/GaN multilayer barriers are used. |
|---|---|
| Bibliography: | The advantages of InGaN based light-emitting diodes with InGaN/GaN multilayer barriers are studied. It is found that the structure with InGaN/GaN multilayer barriers shows improved light output power, lower current leakage, and less efficiency droop over its conventional InGaN/GaN counterparts. Based on the numerical simulation and analysis, these improvements on the electrical and the optical characteristics are mainly attributed to the alleviation of the electrostatic field in the quantum wells (QWs) when the InGaN/GaN multilayer barriers are used. Tong Jin-Hui, Li Shu-Ti , Lu Tai-Ping Liu Chao, Wang Hai-Long, Wu Le-Juan, Zhao Bi-Jun, Wang Xing-Fu, and Chen Xin Institute of Opto-electronic Materials and Technology, South China Normal University, Cuangzhou 510631, China GaN based light-emitting diode, InGaN/GaN multilayer barriers, electrostatic field 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1674-1056 2058-3834 1741-4199 |
| DOI: | 10.1088/1674-1056/21/11/118502 |