Broadband light emitting from multilayer-stacked InAs/GaAs quantum dots

We report the effect of the GaAs spacer layer thickness on the photoluminescence (PL) spectral bandwidth of InAs/GaAs self-assembled quantum dots (QDs). A PL spectral bandwidth of 158 nm is achieved with a five-layer stack of InAs QDs which has a 11-nm thick GaAs spacer layer. We investigate the opt...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 21; no. 11; pp. 408 - 411
Main Author 刘宁 金鹏 王占国
Format Journal Article
LanguageEnglish
Published 01.11.2012
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/21/11/117305

Cover

More Information
Summary:We report the effect of the GaAs spacer layer thickness on the photoluminescence (PL) spectral bandwidth of InAs/GaAs self-assembled quantum dots (QDs). A PL spectral bandwidth of 158 nm is achieved with a five-layer stack of InAs QDs which has a 11-nm thick GaAs spacer layer. We investigate the optical and the structurM properties of the multilayer-stacked InAs/GaAs QDs with different GaAs spacer layer thicknesses. The results show that the spacer thickness is a key parameter affecting the multi-stacked InAs/GaAs QDs for wide-spectrum emission.
Bibliography:Liu Ning, Jin Peng, and Wang Zhan-Guo a) Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-DimensionM Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China b) Electricity Examination Department, Patent Examination Cooperation Center of the Patent Office, State Intellectual Property Office, Beijing 100190, China
We report the effect of the GaAs spacer layer thickness on the photoluminescence (PL) spectral bandwidth of InAs/GaAs self-assembled quantum dots (QDs). A PL spectral bandwidth of 158 nm is achieved with a five-layer stack of InAs QDs which has a 11-nm thick GaAs spacer layer. We investigate the optical and the structurM properties of the multilayer-stacked InAs/GaAs QDs with different GaAs spacer layer thicknesses. The results show that the spacer thickness is a key parameter affecting the multi-stacked InAs/GaAs QDs for wide-spectrum emission.
11-5639/O4
quantum dots, broudband spectrum, superluminescent diode
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/21/11/117305