Physical model for the exotic ultraviolet photo-conductivity of ZnO nanowire films

Employing a simple and efficient method of electro-chemical anodization, ZnO nanowire films are fabricated on Zn foil, and an ultraviolet (UV) sensor prototype is formed for investigating the electronic transport through back-to-back double junctions. The UV (365 nm) responses of surface-contacted Z...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 22; no. 11; pp. 634 - 639
Main Author 潘跃武 任守田 曲士良 王强
Format Journal Article
LanguageEnglish
Published 01.11.2013
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/22/11/118102

Cover

More Information
Summary:Employing a simple and efficient method of electro-chemical anodization, ZnO nanowire films are fabricated on Zn foil, and an ultraviolet (UV) sensor prototype is formed for investigating the electronic transport through back-to-back double junctions. The UV (365 nm) responses of surface-contacted ZnO film are provided by I-V measurement, along with the current evolution process by on/off of UV illumination. In this paper, the back-to-back metal-seconductor-metal (M-S-M) model is used to explain the electronic transport of a ZnO nanowire film based structure. A thermionic-field electron emission mechanism is employed to fit and explain the as-observed UV sensitive electronic transport properties of ZnO film with surface-modulation by oxygen and water molecular coverage.
Bibliography:Pan Yue-Wu, Ren Shou-Tian, Qu Shi-Liang, Wang Qiang(a) Mathematics and Physical Sciences Technology, Xuzhou Institute of Technology, Xuzhou 221008, China b ) Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China
Employing a simple and efficient method of electro-chemical anodization, ZnO nanowire films are fabricated on Zn foil, and an ultraviolet (UV) sensor prototype is formed for investigating the electronic transport through back-to-back double junctions. The UV (365 nm) responses of surface-contacted ZnO film are provided by I-V measurement, along with the current evolution process by on/off of UV illumination. In this paper, the back-to-back metal-seconductor-metal (M-S-M) model is used to explain the electronic transport of a ZnO nanowire film based structure. A thermionic-field electron emission mechanism is employed to fit and explain the as-observed UV sensitive electronic transport properties of ZnO film with surface-modulation by oxygen and water molecular coverage.
11-5639/O4
ZnO nanowires, metal-semiconductor-metal contact, water modulated surface barrier,thermionic-field electron emission
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/22/11/118102