Interplay between out-of-plane magnetic plasmon and lattice resonance for modified resonance lineshape and near-field enhancement in double nanoparticles array

Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonan...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 22; no. 12; pp. 472 - 477
Main Author 丁佩 王俊俏 何金娜 范春珍 蔡根旺 梁二军
Format Journal Article
LanguageEnglish
Published 01.12.2013
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/22/12/127802

Cover

More Information
Summary:Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay between the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement on magnetic field enhancement. Simultaneous electric field and magnetic field enhancement can be obtained in the gap region between neighboring particles at two resonance frequencies as the interplay occurs, which presents “open” cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmon interactions in periodic nanostructure or metamaterials comprising multiple elements.
Bibliography:magnetic plasmon lattice resonance field enhancement nanoparticles array
Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay between the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement on magnetic field enhancement. Simultaneous electric field and magnetic field enhancement can be obtained in the gap region between neighboring particles at two resonance frequencies as the interplay occurs, which presents “open” cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmon interactions in periodic nanostructure or metamaterials comprising multiple elements.
Ding Peia, Wang Jun-Qiaob, He Jin-Nab, Fan Chun-Zhenb, Cai Gen-Wangb, Liang Er-Junb (a Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015, China;b School of Physical Science and Engineering and Key Laboratory of Materials Physics of Ministry of Education of China, Zhengzhou University, Zhengzhou 450052, China )
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/22/12/127802