A new poly-Si TFT compensation pixel circuit employing AC driving mode for AMOLED displays
This paper presents a new poly-Si pixel circuit employing AC driving mode for active matrix organic light-emitting diode (AMOLED) displays. The proposed pixel circuit, which consists of one driving thin-film tran- sistor (TFT), three switching TFTs, and one storage capacitor, can effectively compens...
Saved in:
| Published in | Journal of semiconductors Vol. 34; no. 12; pp. 122 - 125 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.12.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-4926 |
| DOI | 10.1088/1674-4926/34/12/125011 |
Cover
| Summary: | This paper presents a new poly-Si pixel circuit employing AC driving mode for active matrix organic light-emitting diode (AMOLED) displays. The proposed pixel circuit, which consists of one driving thin-film tran- sistor (TFT), three switching TFTs, and one storage capacitor, can effectively compensate for the threshold voltage variation in poly-Si and the OLED degradation. As there is no light emission, except for during the emitting period, and a small number of devices used in the proposed pixel circuit, a high contrast ratio and a high pixel aperture ratio can be easily achieved. Simulation results by SMART-SPICE software show that the non-uniformity of the OLED current for the proposed pixel circuit is significantly decreased (〈 10%) with an average value of 2.63%, while that of the conventional 2T1C is 103%. Thus the brightness uniformity of AMOLED displays can be improved by using the proposed pixel circuit. |
|---|---|
| Bibliography: | This paper presents a new poly-Si pixel circuit employing AC driving mode for active matrix organic light-emitting diode (AMOLED) displays. The proposed pixel circuit, which consists of one driving thin-film tran- sistor (TFT), three switching TFTs, and one storage capacitor, can effectively compensate for the threshold voltage variation in poly-Si and the OLED degradation. As there is no light emission, except for during the emitting period, and a small number of devices used in the proposed pixel circuit, a high contrast ratio and a high pixel aperture ratio can be easily achieved. Simulation results by SMART-SPICE software show that the non-uniformity of the OLED current for the proposed pixel circuit is significantly decreased (〈 10%) with an average value of 2.63%, while that of the conventional 2T1C is 103%. Thus the brightness uniformity of AMOLED displays can be improved by using the proposed pixel circuit. 11-5781/TN poly-Si; TFT, AMOLED; AC mode Song Xiaofeng, Luo Jianguo, Zhou Lei, Zhang Llrong, Wu Weijing, Peng Junblao(1 State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China 2 School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1674-4926 |
| DOI: | 10.1088/1674-4926/34/12/125011 |