Radial magnetic field in magnetic confinement device

The intrinsic radial magnetic field(B r) in a tokamak is explored by the solution of the Grad–Shafranov equation in axisymmetric configurations through an expansion of the four terms of the magnetic surfaces. It can be inferred from the simulation results that at the core of the device, the tokamak...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 9; pp. 337 - 342
Main Author 熊昊 刘明海 陈明 饶波 陈杰 陈兆权 肖金水 胡希伟
Format Journal Article
LanguageEnglish
Published 01.09.2015
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/24/9/095202

Cover

More Information
Summary:The intrinsic radial magnetic field(B r) in a tokamak is explored by the solution of the Grad–Shafranov equation in axisymmetric configurations through an expansion of the four terms of the magnetic surfaces. It can be inferred from the simulation results that at the core of the device, the tokamak should possess a three-dimensional magnetic field configuration, which could be reduced to a two-dimensional one when the radial position is greater than 0.6a. The radial magnetic field and the amzimuthal magnetic field have the same order of magnitude at the core of the device. These results can offer a reference for the analysis of the plasma instability, the property of the core plasma, and the magnetic field measurement.
Bibliography:radial magnetic field,minor toroidal coordinate,three-dimensional magnetic field configuration
11-5639/O4
The intrinsic radial magnetic field(B r) in a tokamak is explored by the solution of the Grad–Shafranov equation in axisymmetric configurations through an expansion of the four terms of the magnetic surfaces. It can be inferred from the simulation results that at the core of the device, the tokamak should possess a three-dimensional magnetic field configuration, which could be reduced to a two-dimensional one when the radial position is greater than 0.6a. The radial magnetic field and the amzimuthal magnetic field have the same order of magnitude at the core of the device. These results can offer a reference for the analysis of the plasma instability, the property of the core plasma, and the magnetic field measurement.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/9/095202