Effect of de-trapping on carrier transport process in semi-insulating CdZnTe
The effect of de-trapping on the carrier transport process in the CdZ'nTe detector is studied by laser beam-induced transient current (LBIC) measurement. Trapping time, de-trapping time, and mobility for electrons are determined directly from transient waveforms under various bias voltages. The resu...
Saved in:
Published in | Chinese physics B Vol. 24; no. 6; pp. 511 - 515 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/24/6/067203 |
Cover
Summary: | The effect of de-trapping on the carrier transport process in the CdZ'nTe detector is studied by laser beam-induced transient current (LBIC) measurement. Trapping time, de-trapping time, and mobility for electrons are determined directly from transient waveforms under various bias voltages. The results suggest that an electric field strengthens the capture and emission effects in trap center, which is associated with field-assisted capture and the Poole-Frenkel effect, respectively. The electron mobility is calculated to be 950 cm2/V-s and the corresponding electron mobility-lifetime product is found to be 1.32 × 10-3 cm2/V by a modified Hecht equation with considering the surface recombination effect. It is concluded that the trapping time and de-trapping time obtained from LBIC measurement provide direct information concerning the transport process. |
---|---|
Bibliography: | CdZnTe, LBIC, de-trapping, electron transport process, mobility The effect of de-trapping on the carrier transport process in the CdZ'nTe detector is studied by laser beam-induced transient current (LBIC) measurement. Trapping time, de-trapping time, and mobility for electrons are determined directly from transient waveforms under various bias voltages. The results suggest that an electric field strengthens the capture and emission effects in trap center, which is associated with field-assisted capture and the Poole-Frenkel effect, respectively. The electron mobility is calculated to be 950 cm2/V-s and the corresponding electron mobility-lifetime product is found to be 1.32 × 10-3 cm2/V by a modified Hecht equation with considering the surface recombination effect. It is concluded that the trapping time and de-trapping time obtained from LBIC measurement provide direct information concerning the transport process. Guo Rong-Rong, Jie Wan-Qi, Zha Gang-Qiang, Xu Ya-Dong, Feng Tao, Wang Tao, and Du Zhuo-Tong( State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China) 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/24/6/067203 |